Ultrasonic Tobacco Extraction
Conventional tobacco extraction is a slow, time-consuming process, which involves the use of toxic solvents at high temperatures, which makes the process hazardous. Ultrasonically-assisted extraction of alkaloids from tobacco can be run using water or mild solvents in a rapid process of a few minutes. Ultrasonically extracted alkaloids such as nicotine from tobacco are released in a rapid and highly efficient procedure, which gives high yields of a full spectrum extract (containing nicotine, nornicotine, chlorogenic acid, 5-caffeoylquinic acid, rutin, caffeic acid and scopoletin, solanesol etc.).
Ultrasonic Extraction of Tobacco
Ultrasonic-assisted extraction is a fast, effective, and convenient extraction method, which is based on the application of power-ultrasound. Intense ultrasonic waves generate rapid micro-movement and acoustic cavitation in solid-liquid systems (e.g vegetal material in solvent, e.g. tobacco leaves in ethanol), which results in an increased mass transfer as well as an accelerated extraction process. In comparison with other advanced extraction techniques such as supercritical fluid extraction and ion-pair extraction, ultrasonically-assisted extraction is significantly more economic, environmental-friendlier, safer and easier to use. Therefore, ultrasonic extraction is the preferred extraction technique to release bioactive compounds from botanicals.
Ultrasonic extraction results in a broad spectrum extract, containing nicotine, which is the primary alkaloid with 94–98% of the total alkaloid content in tobacco, as well as the alkaloids nornicotine, anabasine, anatabine, cotinine and myosmine.
Read more about alkaloid extraction from plant material using a probe-type ultrasonicator!
Full Spectrum Tobacco Extracts with Sonication
Alkaloids such as nicotine and nornicotine, chlorogenic acid, phenolics, solanesol and other bioactive compounds can be rapidly, efficiently and safely isolated using ultrasonic extraction. The conventional tobacco extraction involves the use of toxic solvents such as heptane at high temperatures, which turns the extraction process into a hazardous procedure. The whole conventional extraction process takes approx. 24h and is thereby very time-consuming.
Ultrasonic extraction can be performed as cold-water extraction or using mild solvents such as ethanol or ethanol-water mixture at room temperature or slightly elevated temperatures. The sonication takes a few minutes, which turns the extraction into a rapid procedure. Furthermore, using water or mild solvents the process is completely safe and convenient.
The ultrasonically produced full spectrum extracts contain the primary alkaloid nicotine as well as the secondary or minor alkaloids such as anabasine or 3-(2-piperidinyl)pyridine, anatabine or 3-(2-1,2,3,6-tetrahydropyridyl)pyridine, cotinine or 1-methyl-5-(3-pyridyl)-2-pyrrolidinone), 2,3’-dipyridyl or isonicoteine, N-formylnornicotine or 2-(3-pyridyl)pyrrolidinecarbaldehyde, myosmine or 3-(1-pyrrolin-2-yl)pyridine, nornicotine or 3-(pyrrolidin-2-yl)pyridine, and beta-nicotyrine or 3-(1-methylpyrrol-2-yl)pyridine.
The content of these alkaloids varies depending on tobacco species and tobacco products. While nicotine is the primary alkaloid with 94–98% of the total alkaloid content, nornicotine and anatabine are the two most abundant secondary alkaloids, each accounting for approx. 2% to 6% of the total alkaloid content of tobacco.
- Higher Yield
- High Quality
- Rapid Extraction
- Mild, Non-thermal Process
- Water or Solvent
- Simple & Safe Operation
Choose from a Broad Selection of Solvents
Using ultrasonic extraction, you can select from various solvents, including water, alcohol, ethanol, methanol, ethanol-water mixtures or strong solvents such as heptane or hexane. All of the former named solvents have been already successfully tested and shown to be effective for the isolation of bioactive compounds such as alkaloids, terpenoids, phenolics and solanesol from tobacco plant materials. Sonication can be used in solvent-free cold-water extraction (e.g. to prepare organic extracts) or can be combined with a solvent of your choice.
Learn more about solvents for the ultrasonic extraction from botanicals!
Learn more about ultrasonically-intensified hexane extraction!
High-Performance Ultrasound Extractors
Hielscher’s ultrasonic equipment is a commonly extraction tool for the isolation of bioactive compounds from botanicals. Supplying ultrasonic extractors for all process scales, Hielscher is able to recommend you the most suitable ultrasonic system for your needs. Starting with compact, yet powerful lab systems for analysis and feasibility testing, Hielscher offers the full range from lab and pilot plant ultrasonicators up to fully industrial ultrasound reactors. Offering the full band width of ultrasonic processors, Hielscher has the ideal setup for your extraction process. Depending on your process volume and goal, ultrasonic extraction can be performed in batch or continuous flow mode. Manifold accessories such as sonotrodes, booster horns, flow cells and reactors allow to equip the ultrasonic processor to fulfil the process targets ideally.
Hielscher ultrasonic processors can be precisely controlled and process data are automatically recorded on the integrated SD-card of our digital ultrasonic systems. The reliable control over the process parameters ensure a consistently high product quality. The automatic data recording of the process parameters allow for an easy process standardization and the fulfilment of Good Manufacturing Practices (GMP).
The robustness of Hielscher’s ultrasonic equipment allows for 24/7 operation at heavy duty and in demanding environments. Easy and safe operation as well as low maintenance make Hielscher ultrasonic systems the reliable work horse in your production.
The table below gives you an indication of the approximate processing capacity of our ultrasonicators:
Batch Volume | Flow Rate | Recommended Devices |
---|---|---|
0.5 to 1.5mL | n.a. | VialTweeter |
1 to 500mL | 10 to 200mL/min | UP100H |
10 to 2000mL | 20 to 400mL/min | UP200Ht, UP400St |
0.1 to 20L | 0.2 to 4L/min | UIP2000hdT |
10 to 100L | 2 to 10L/min | UIP4000 |
n.a. | 10 to 100L/min | UIP16000 |
n.a. | larger | cluster of UIP16000 |
Contact us now for further information! Our well-trained staff will be glad to discuss your extraction process with you!
Contact Us! / Ask Us!
Literature/References
- Esclapez, M.D.; García-Pérez, J.V.; Mulet, A.; Cárcel, J.A. (2011): Ultrasound-Assisted Extraction of Natural Products. Food Engineering Reviews, Volume 3, 2011. 108–120.
- Vinatoru, M. (2001): An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrasonics Sonochemistry 8(3):303-13.
- Chen, P.X.; Qian, N.; Burton, H.R.; Moldoveanu, S.C. (2005): Analysis of Minor Alkaloids in Tobacco: A Collaborative Study. Contributions to Tobacco Research, Vol. 21, No.7, 2005.
- Yuegang Zuo, Liliang Zhang, Jingping Wu, Johnathan W. Fritz, Suzanne Medeiros, Christopher Rego (2004): Ultrasonic extraction and capillary gas chromatography determination of nicotine in pharmaceutical formulations. Analytica Chimica Acta, Volume 526, Issue 1, 2004. 35-39.
Facts Worth Knowing
Why is Ultrasonic Extraction so Effective?
Ultrasonically-assisted extraction (UAE) is based on coupling highly intense ultrasound waves (acoustic waves) into a liquid or slurry. The acoustic waves create alternating high pressure / low pressure cycles, which result in the phenomenon of acoustic cavitation. The phenomenon of ultrasonic or acoustic cavitation is characterized by extreme, locally confined conditions of very high pressures, temperatures and shear forces. In proximity of the imploding cavitation bubbles, temperatures of up to 5000K, pressures of 1000 atmosphere, heating-cooling rate above 1010 K/s and liquids jets with up to 280m/s velocity, which appear as very high shear force and turbulences in the cavitational zone, can be measured. The combination of these factors (pressure, heat, shear and turbulence) disrupt cells (lysis) and intensify mass transfer during the extraction process. Thereby, the liquid-solid extraction of phytoconstituents from plant cells is promoted. The ultrasonic extraction technique is widely applied for the successful and efficient extraction of flavonoids, polysaccharides, alkaloids, phytosterols, polyphenols, and pigments from plants.Tobacco
Various plants in the Nicotiana genus and the Solanaceae (nightshade) family are known as tobacco plants. Besides being the commonly used term for the plant, tobacco describes also the products prepared from the cured leaves of the tobacco plant. Whilst Nicotiana tabacum is the main crop use for tobacco and nicotine production, there are over 70 plant species of tobacco. N. tabacum is the dominant species used for tobacco products, however the more potent variant N. rustica can be found around the world and is used for the production of pesticides.Comparing the nicotine centent, N. rustica leaves have a nicotine content as high as 9%, whereas N. tabacum leaves contain about 1 to 3%.
Tobacco contains the stimulant alkaloid nicotine as well as harmala alkaloids. Dried and cured tobacco leaves are mainly used for smoking in cigarettes, cigars, pipes, shishas as well as e-cigarettes, e-cigars, e-pipes and vaporizers. Alternatively, they can be consumed as snuff, chewing tobacco, dipping tobacco and snus.
The tobacco plant family contains various (sub-)species, which exhibit different alkaloid and flavour profiles.
Oriental tobacco (Nicotiana tabacum L.) is a species of tobacco grown mainly in Turkey, Greece, and neighboring areas, which is used for the commercial production of cigarettes, cigars and chewing tobacco. It has a strong characteristic flavor, is relatively low in nicotine and high in reducing sugars, acids, and volatile flavor oil, which gives the tobacco products an intense aroma.
There are 67 natural species of tobacco known. Below the most common species are listed:
- Nicotiana acuminata (Graham) Hook. – manyflower tobacco
- Nicotiana africana Merxm.
- Nicotiana alata Link & Otto – winged tobacco, jasmine tobacco, tanbaku (Persian)
- Nicotiana attenuata Torrey ex S. Watson – coyote tobacco
- Nicotiana benthamiana Domin
- Nicotiana clevelandii A. Gray
- Nicotiana glauca Graham – tree tobacco, Brazilian tree tobacco, shrub tobacco, mustard tree
- Nicotiana glutinosa L.
- Nicotiana langsdorffii Weinm.
- Nicotiana longiflora Cav.
- Nicotiana occidentalis H.-M. Wheeler
- Nicotiana obtusifolia M. Martens & Galeotti – desert tobacco, punche, “tabaquillo”
- Nicotiana otophora Griseb.
- Nicotiana plumbaginifolia Viv.
- Nicotiana quadrivalvis Pursh
- Nicotiana rustica L. – Aztec tobacco, mapacho
- Nicotiana suaveolens Lehm. – Australian tobacco
- Nicotiana sylvestris Speg. & Comes – South American tobacco, woodland tobacco
- Nicotiana tabacum L. – commercial tobacco grown for the production of cigarettes, cigars, chewing tobacco, etc.
- Nicotiana tomentosiformis Goodsp.
The three species below are man-made hybrids:
- Nicotiana × didepta N. debneyi × N. tabacum
- Nicotiana × digluta N. glutinosa × N. tabacum
- Nicotiana × sanderae Hort. ex Wats. N. alata × N. forgetiana
Types of Tobacco
The curing and subsequent aging process of tobacco leaves induces a slow oxidation and degradation of the present carotenoids in tobacco leaf. Due to the oxidation, certain compounds in the tobacco leaves are synthesized, which result in sweet hay, tea, rose oil, or fruity aromatic flavors, which contribute to the “smoothness” of the smoke. Starches are converted into sugars, which subsequently glycate proteins, and are oxidized into advanced glycation endproducts (AGEs). This is a caramelization process that also gives the smoke its flavor.
The preparation and curing method of tobacco influences its final aroma characteristics. Curing can be achieved by air-, fire-, flue-, and sun-curing. For example, flue-cured tobacco (e.g. from France) contains only low levels of alkaloids, whilst air-cured Burley tobacco (e.g. sourced from Guatemala) is known for its high content of alkaloids.