Hielscher – Ultrasound Technology

Power Ultrasound for the Production of Cosmetics

  • Ultrasonic processing has many application field in the development and manufacturing of cosmetics and personal care.
  • Ultrasonic applications in the cosmetic industry include emulsions, dispersions, particle size reduction, liposome preparation, and extraction of active compounds.
  • Ultrasonic equipment is available the research in laboratories and the full-commercial production of large capacities.
  • Ultrasonic Processing of Cosmetic Liquids

    Skin care and decorative cosmetic products have to fulfill highest quality standards. A reliable processing technology is crucial in order to meet this objective. Power ultrasound a is reliable homogenization and extraction technique, which achieves unique results and allows to produce valuable, innovative products. To keep pace with cosmetic research and development, powerful and adaptable homogenizers are required. Hielscher Ultrasonics supplies you reliable ultrasonic equipment for each stage of processing – from the development of new formulations in the research lab to the final manufacturing of your commercialized product. Click here to see the full range of Hielscher’s ultrasonicators!

    Emulsions

    Ultrasound is a proven technique to produce fine-size emulsions (W/O, O/W, O/W/O, W/O/W), such as mini-, nano- or micro-emulsions, double emulsions and phase inversion emulsions. During ultrasonic homogenization, intense cavitation forces shears the two or more immiscible phases into very small droplets. A high emulsion stability is achieved by both small droplet size and low polydispersity of the droplet size distribution. Emulsions are highly relevant for the production of creams, lotions, serums, oils, balms, gels & oleo gels and waxes.
    Click here to read more about the ultrasonic emulsification!

    Dispersions/ Suspensions

    Powders, pigments (e.g. TiO2, ZnO) and minerals are common ingredients in cosmetic products such as creams, sun screens, lipstick, and nail polish. To obtain an uniform product of high quality, the even dispersion and distribution of the powder, pigment or mineral particles must be ensured. As ultrasound provides reliable fine-size dispersions, it is the homogenization technique to go for.
    Click here to read more about the ultrasonic dispersing!

    Particle Size Distribution/ Milling

    Especially for decorative cosmetics, pigments have to be milled to micron and sub-micron size and must be dispersed uniformly in the product. When intense ultrasonic waves are coupled into liquids and viscous, pasty slurries, the ultrasonic cavitation results in high shear forces that can grind particles and pigments down to sub-micron and nano size. Especially for decorative cosmetics (e.g. mascara, nail polish, lipstick, make-up), the fine size distribution of pigments is an important mark of quality.
    Click here to read more about the ultrasonic particle size reduction!

    Extraction

    Ultrasound is a very fast and efficient technique to improve the yield of active components extracted from plants, e.g. antioxidants, polysaccharides, terpenes, and phenolic compounds. As a non-thermal method, ultrasound extracts the compounds in a gentle way so that damages and degradation is avoided. Beside a higher yield of extracts, the advantage of ultrasonic extraction lie in the use of green extraction solvent (e.g. water) or use of less solvent, lower extraction temperature, and the considerably reduced extraction time. The ultrasonic extraction is a well-investigated technique and has been proven successful for many active compounds such as ascorbic acid (vitamin C), α-tocopherol (vitamin E) and β-carotene (provitamin A), co-enzyme Q10, or ferulic acid.
    Furthermore, the application of ultrasonic waves can improve traditional extraction methods such as Soxhlet extraction, supercritical CO2 extraction and enzymatic extraction (e.g. for collagen).
    Click here to read more about the ultrasonic extraction!

    Liposomes

    Active compounds must be encapsulated to be carried into the deeper skin layer where they should unfold their full effects. Liposomes are a common carrier for active compounds and APIs. Sonication is a reliable tool to encapsulate substances in liposomes and to emulsify them into the final product. Click here to read more about the ultrasonically-assisted encapsulation of liposomes!

    Dissolving

    Ultrasound waves are very efficient to dissolve and homogenize two or more phase into an uniform product. Powerful ultrasonic shear forces help to dissolve powders, e.g. allantoin powder Homogenization is an important step to obtain an high-quality product with constant characteristics. Therefore, ultrasound is the preferred method when it comes to dissolving and homogenization applications.
    Click here to read more about the ultrasonic dissolving!

    Industrial ultrasonic systems with flow reactors for continuous processing enable for high volume production

    Powerful 1.5kW ultrasonic processor UIP15000hd

    Information Request
    • (valid email required)


    Sonication can be carried out as a batch or as continuous process.

    Ultrasonic flow cell reactor for continuous processing.

    Contact Us / Ask for more Information

    Talk to us about your processing requirements. We will recommend the most suitable setup and processing parameters for your project.

    • (valid email required)


    Development & Analysis in the Laboratory


    Hielscher ultrasonic laboratory devices are ideal for research and development as well as for routine processes. Devices like the handheld UP100H are suitable for manifold applications, e.g. mixing, dispersing, emulsifying, homogenizing, disintegrating or dissolving. The laboratory devices are easy to use, and have an unmatched efficiency and flexibility. All devices can be precisely controlled so that the reproducibility for the scale up to production scale is ensured.

    Ultrasonic Manufacturing

    Ultrasonication can be scaled up easily. Laboratory tests will allow to select the required equipment size accurately. The table below shows general device recommendations depending on the batch volume or flow rate to be processed.

    Batch VolumeFlow RateRecommended Devices
    0.5 to 1.5mLn.a.VialTweeter
    1 to 500mL10 to 200mL/minUP100H
    10 to 2000mL20 to 400mL/minUP200Ht, UP400S
    0.1 to 20L0.2 to 4L/minUIP1000hd, UIP2000hd
    10 to 100L2 to 10L/minUIP4000
    n.a.10 to 100L/minUIP16000
    n.a.largercluster of UIP16000

    Inline Processing

    Discrete Recirculation for UltrasonicationHielscher ultrasonic reactors are commonly used in-line. The material is pumped into the reactor vessel. There it is exposed to ultrasonic cavitation at a controlled intensity. The exposure time is a result of the reactor volume and the material feed rate. Inline sonication eliminates by-passing because all particles pass the reactor chamber following a defined path. As all particles are exposed to identical sonication parameters for the same time during each cycle, ultrasonication typically shifts the distribution curve rather than widening it. Generally, “right tailing” can not be observed at sonicated samples.

    Process Cooling

    For temperature-sensitive formulations, Hielscher offers jacketed flow cell reactors for all laboratory and industrial devices. By cooling the internal reactor walls, process heat can be dissipated effectively.

    Robust and Easy to Clean

    Ultrasonic Flow Cell Reactor made of stainless steel for the sonication of liquids.An ultrasonic reactor consist of the reactor vessel and the ultrasonic sonotrode. This is the only part, that is subject to wear and it can be easily replaced within minutes. Oscillation-decoupling flanges allow to mount the sonotrode into open or closed pressurizable containers or flow cells in any orientation. No bearings are needed. Flow cell reactors are generally made of stainless steel and have simple geometries and can easily be disassembled and wiped out. There are no small orifices or hidden corners. Special flow cell reactors meeting the advanced CIP (clean-in-place) and SIP (sterilize-in-place) requirements are available, too.

    Ultrasonic Cleaner in Place

    The ultrasonic intensity used for dispersing applications is much higher than for typical ultrasonic cleaning. Therefore the ultrasonic power can be used to assist cleaning during flushing and rinsing, as the ultrasonic cavitation removes particles and liquid residues from the sonotrode and from the flow cell walls.



    Facts Worth Knowing

    Ultrasonic tissue homogenizers are often referred to as probe sonicator/ sonificator, sonic lyser, ultrasound disruptor, ultrasonic grinder, sono-ruptor, sonifier, sonic dismembrator, cell disrupter, ultrasonic disperser, emulsifier or dissolver. The different terms result from the various applications that can be fulfilled by sonication.