ultraskaņas ekstrakcija – Daudzpusīgs un izmantojams jebkuram botāniskajam materiālam
Can I use my probe-type ultrasonicator for cannabis and psilocybin extraction? The answer is: Yes! You can use your ultrasonicator for numerous different raw materials to produce high-quality extracts. The beauty of the ultrasonic extraction technique lies in its compatibility with virtually any botanical raw material and solvent. Therefore, ultrasonic extraction gives high yields within short process times for both, polar and non-polar molecules.
Extraction of Polar and Non-Polar Molecules with Ultrasound
The degree of extractability of bioactive compounds is determined by various factors such as the surrounding cellular structures or the polarity of the target molecule.
„Like Dissolves Like“
The solubility at molecular level can be differentiated generally into two different categories: polar and non-polar.
Polar molecules have positively + and negatively – charged ends. Non-polar molecules have almost no charge (zero charge) or the charge is balanced. Solvents range in these categories and can be e.g., heavily, medium or low polar or non-polar.
As the phrase „Like Dissolves Like“ hints, molecules dissolve best in a solvent with the same polarity.
Polar solvents will dissolve polar compounds. Non-polar solvents dissolve non-polar compounds. Depending in the polarity of the botanical compound, a suitable solvent with high dissolving capacity must be chosen.
Lipids and fats are non-polar molecules. Phytochemicals such as the major cannabinoids (CBD, THC), terpenes, tocopherols, chlorophyll A and carotenoids are such non-polar molecules. Aqueous molecules such as psilocybin, anthocyanins, most alkaloids, chlorophyll B, vitamin C, and B vitamins are types of polar molecules.
This means that you should choose different solvents for cannabis and psilocybin extraction, since cannabinoid molecules are nonpolar, while psilocybin molecules are polar. Accordingly, the polarity of the solvent matters. Polar molecules such as the phytochemical psilocybin dissolve best in polar solvents. Prominent polar solvents are e.g. water or methanol. Non-polar molecules, on the other hand, dissolve best in non-polar solvents such as hexane or toluene.
Ultrasound Extraction of Any Phytochemical Choosing the Ideal Solvent
The advantage of the ultrasonic extractor is its compatibility with almost any solvent type. You can use an ultrasound extraction system with polar and non-polar solvents.
Some raw materials such as vital mushrooms often benefit from a two-stage extraction process, where ultrasonic extraction is performed successively with a polar and non-polar solvent. Such a two-stage extraction releases both, the polar and non-polar molecule types.
Water is a polar solvent; other polar solvents include acetone, acetonitrile, dimethylformamide (DMF), dimelthylsulfoxide (DMSO), isopropanol, and methanol.
Note: Although water is technically a solvent, water-based extraction is often termed in layman terms as a solvent-free extraction.
Ethanol, acetone, dichloromethane etc. are categorized as intermediate polar, whilst n-hexane, ether, chloroform, toluene, etc. are nonpolar.
Etanola – the Versatile Solvent for Botanical Extraction
Ethanol, a heavily used solvent for botanical extraction, is a medium polar solvent. This means, ethanol has polar and non-polar extraction properties. Having polar and non-polar extraction capacities, makes ethanol an ideal solvent for broad-spectrum extracts as often produced from botanicals such as hemp, cannabis, and other herbs, where a variety of different phytochemicals are extracted in order to obtain the so-called entourage effect. The entourage effect describes the effect of various bioactive compounds in combination, which results in a significantly more pronounced health-promoting effects. For instance, a broad-spectrum hemp extract contains various cannabinoids such as cannabidiol (CBD), cannabigerol (CBG), cannabinol (CBN), cannabichromene (CBC), terpenes, terpenoids, alkaloids and other phytochemicals, which work in combination and enforce the beneficial effects of the extracted in a holistic way.
Simple Switch between Botanical Materials
The change between batches of various botanicals raw materials is simple and quickly done.
For ultrasonic batch extraction, simply prepare your slurry consisting of (dried) macerated plant material, e.g. hemp in ethanol. Insert the ultrasonic probe (aka sonotrode) into the vessel and sonicate for the determined time. After sonication, remove the ultrasonic probe from the batch. Cleaning of the ultrasonicator is simple and takes only a minute: Wipe down the sonotrode to remove plant particulates, then use the ultrasonicator’s CIP (clean-in-place) feature. Insert the sonotrode in a beaker with water, switch the unit on and let run the device for 20-30 sec. Thereby, the ultrasonic probe cleans itself.
Now, you are ready to run the next batch for the extraction of another botanical such as psilocybin in water.
Similarly, ultrasonic inline systems equipped with flow cell are cleaned via CIP mechanism. Feeding the flow cell with water whilst running the ultrasound is mostly sufficient for cleaning. Of course, you can add a little amount of cleaning agents (e.g., to facilitate the removal of oils).
Ultrasonic extractors are universally usable for any kind of bioactive compounds and their polarity-wise suitable solvent.
- Augstāka raža
- augsta kvalitāte
- Nav termiskās degradācijas
- ātra ekstrakcija
- vienkārša un droša ekspluatācija
- Zaļā ekstrakcija
Find the Best High-Performance Ultrasonicator for Your Extraction Purposes
Hielscher Ultrasonics extractors are well established in the field of botanical extraction. Extract producers – from small boutique extract manufacturers to large-scale mass producers – find in Hielscher‘ broad equipment range the ideal ultrasonicator for their production capacity. Batch as well as continuous inline process setups are readily available, quickly installed as well as safe and intuitively to operate.
Augstākā kvalitāte – Paredzēti & Ražots Vācijā
The sophisticated hardware and smart software of Hielscher ultrasonicators are designed to guarantee reliable ultrasonic extraction results from your botanical raw material with reproducible outcomes and user-friendly, safe operation. Built for 24/7 operation and offering high robustness and low maintenance requirements, Hielscher ultrasound extractors are a reliable and comfortable solution for botanical extract producers.
Hielscher Ultrasonics extractors are used worldwide in the production of high-quality botanical extracts. Proven to produce high-quality extract, Hielscher ultrasonicators are not only used smaller crafters of boutique extracts, but mostly in the industrial production of widely commercial distributed extracts and nutritional supplements. Due to their robustness and low maintenance, Hielscher ultrasonic processors can be easily installed, operated and monitored.
Automātiska datu protokolēšana
In order to fulfil the production standards of nutritional supplements and therapeutics, production processes must be detailed monitored and recorded. Hielscher Ultrasonics digital ultrasonic devices feature automatic data protocolling. Due to this smart feature, all important process parameters such as ultrasonic energy (total and net energy), temperature, pressure and time are automatically stored onto a built-in SD-card as soon as the device is switched on. Process monitoring and data recording are important for continuous process standardization and product quality. By accessing the automatically recorded process data, you can revise previous sonication runs and evaluate the outcome.
Vēl viena lietotājam draudzīga funkcija ir mūsu digitālo ultraskaņas sistēmu pārlūkprogrammas tālvadības pults. Izmantojot attālo pārlūka vadību, jūs varat sākt, apturēt, pielāgot un uzraudzīt ultraskaņas procesoru attālināti no jebkuras vietas.
Vai vēlaties uzzināt vairāk par ultraskaņas ekstrakcijas priekšrocībām? Sazinieties ar mums tagad, lai apspriestu savu botānisko ekstraktu ražošanas procesu! Mūsu pieredzējušais personāls ar prieku dalīsies ar plašāku informāciju par ultraskaņas ekstrakciju, mūsu ultraskaņas sistēmām un cenām!
Kāpēc ultraskaņas ekstrakcija ir labākā metode?
Efektivitāte
- augstākas ražas
- Ātrs ekstrakcijas process – dažu minūšu laikā
- Augstas kvalitātes ekstrakti – viegla, netermiska ekstrakcija
- Green solvents (water, ethanol, glycerin, vegetable oils, NADES etc.)
Vienkāršība
- Plug-and-play — iestatīšana un darbināšana dažu minūšu laikā
- Augsta caurlaidspēja - liela mēroga ekstrakta ražošanai
- Periodiska vai nepārtraukta inline darbība
- Vienkārša uzstādīšana un palaišana
- Portatīvi / pārvietojami - pārnēsājamas ierīces vai iebūvēti uz riteņiem
- Lineārā skala uz augšu – paralēli pievienojiet vēl vienu ultraskaņas sistēmu, lai palielinātu jaudu
- Attālināta uzraudzība un vadība – izmantojot datoru, viedtālruni vai planšetdatoru
- Nav nepieciešama procesa uzraudzība — iestatīšana un palaišana
- Augstas veiktspējas - paredzēts nepārtrauktai 24/7 ražošanai
- Robustums un zema apkope
- augsta kvalitāte – projektēts un būvēts Vācijā
- Ātra iekraušana un izlāde starp partijām
- Viegli tīrāms
Drošums
- Vienkārši un droši skriet
- Ekstrakcija uz šķīdinātāja vai šķīdinātāja bāzes (ūdens, etanols, augu eļļas, glicerīns utt.)
- Nav augsta spiediena un temperatūras
- Pieejamas ATEX sertificētas sprādziendrošas sistēmas
- Viegli vadāms (arī ar tālvadības pulti)
- aļģes
- antocianīni
- Artemizinīns
- astragalus
- Baggibuti
- rūgtā melone
- kaņepes
- Chilli peppers
- kanēlis
- Citrus fruit peel
- Kakao
- kafija
- Cucurmin
- Kava Kava
- pīles
- Plūškoka
- Ķiploku
- ingvers
- zaļā tēja
- apiņi
- Kratoms
- ārstniecības augi
- mūka augļi
- Sēnes
- olīvu lapas
- granātkoks
- Quercetin
- Quillaja
- Safrāns
- Stevia
- tabaka
- Vaniļas
and many more!
Zemāk redzamajā tabulā ir sniegta norāde par mūsu ultrasonikatoru aptuveno apstrādes jaudu:
Partijas apjoms | Plūsmas ātrums | Ieteicamās ierīces |
---|---|---|
1 līdz 500 ml | 10 līdz 200 ml/min | UP100H |
10 līdz 2000 ml | 20 līdz 400 ml/min | UP200Ht, UP400St |
0.1 līdz 20L | 02 līdz 4 l/min | UIP2000hdT |
10 līdz 100L | 2 līdz 10L/min | UIP4000hdT |
n.p. | 10 līdz 100L/min | UIP16000 |
n.p. | Lielāku | kopa UIP16000 |
Sazinieties ar mums! / Jautājiet mums!
Literatūra / Atsauces
- F. Chemat; M. K. Khan (2011): Applications of ultrasound in food technology: processing, preservation and extraction. Ultrasonic Sonochemistry, 18, 2011. 813–835.
- Petigny L., Périno-Issartier S., Wajsman J., Chemat F. (2013): Batch and Continuous Ultrasound Assisted Extraction of Boldo Leaves (Peumus boldus Mol.). International journal of Molecular Science 14, 2013. 5750-5764.
- Fooladi, Hamed; Mortazavi, Seyyed Ali; Rajaei, Ahmad; Elhami Rad, Amir Hossein; Salar Bashi, Davoud; Savabi Sani Kargar, Samira (2013): Optimize the extraction of phenolic compounds of jujube (Ziziphus Jujube) using ultrasound-assisted extraction method.
- Dogan Kubra, P.K. Akman, F. Tornuk (2019): Improvement of Bioavailability of Sage and Mint by Ultrasonic Extraction. International Journal of Life Sciences and Biotechnology, 2019. 2(2): p.122- 135.
Solvents and Their Polarity
The table below lists the most common solvents arranged in order from lowest to highest polarity.
Šķīdinātāju | formula | boiling point (degC) | melting point (degC) | density (g/mL) |
Šķīdība in H2O (g/100g) | relative Polaritātes |
Cikloheksāns | C6H12 | 80.7 | 6.6 | 0.779 | 0.005 | 0.006 |
pentāns | C5H12 | 36.1 | -129.7 | 0.626 | 0.0039 | 0.009 |
Heksāna | C6H14 | 69 | -95 | 0.655 | 0.0014 | 0.009 |
Heptāns | C7H16 | 98 | -90.6 | 0.684 | 0.0003 | 0.012 |
carbon tetrachloride | CCl4 | 76.7 | -22.4 | 1.594 | 0.08 | 0.052 |
carbon disulfide | CS2 | 46.3 | -111.6 | 1.263 | 0.2 | 0.065 |
p-xylene | C8H10 | 138.3 | 13.3 | 0.861 | 0.02 | 0.074 |
Toluols | C7H8 | 110.6 | -93 | 0.867 | 0.05 | 0.099 |
benzene | C6H6 | 80.1 | 5.5 | 0.879 | 0.18 | 0.111 |
ether | C4H10O | 34.6 | -116.3 | 0.713 | 7.5 | 0.117 |
methyl t-butyl ether (MTBE) | C5H12O | 55.2 | -109 | 0.741 | 4.8 | 0.124 |
diethylamine | C4H11N | 56.3 | -48 | 0.706 | M | 0.145 |
dioxane | C4H8O2 | 101.1 | 11.8 | 1.033 | M | 0.164 |
N,N-dimethylaniline | C8H11N | 194.2 | 2.4 | 0.956 | 0.14 | 0.179 |
chlorobenzene | C6H5Cl | 132 | -45.6 | 1.106 | 0.05 | 0.188 |
anisole | C 7H8O | 153.7 | -37.5 | 0.996 | 0.10 | 0.198 |
tetrahydrofuran (THF) | C4H8O | 66 | -108.4 | 0.886 | 30 | 0.207 |
Etilacetāta | C4H8O2 | 77 | -83.6 | 0.894 | 8.7 | 0.228 |
ethyl benzoate | C9H10O2 | 213 | -34.6 | 1.047 | 0.07 | 0.228 |
dimethoxyethane (glyme) | C4H10O2 | 85 | -58 | 0.868 | M | 0.231 |
diglyme | C6H14O3 | 162 | -64 | 0.945 | M | 0.244 |
methyl acetate | C 3H 6O2 | 56.9 | -98.1 | 0.933 | 24.4 | 0.253 |
Hloroforma | CHCl3 | 61.2 | -63.5 | 1.498 | 0.8 | 0.259 |
3-pentanone | C5H12O | 101.7 | -39.8 | 0.814 | 3.4 | 0.265 |
1,1-dichloroethane | C2H4Cl2 | 57.3 | -97.0 | 1.176 | 0.5 | 0.269 |
di-n-butyl phthalate | C16H22O4 | 340 | -35 | 1.049 | 0.0011 | 0.272 |
cyclohexanone | C6H10O | 155.6 | -16.4 | 0.948 | 2.3 | 0.281 |
pyridine | C5H5N | 115.5 | -42 | 0.982 | M | 0.302 |
dimethylphthalate | C10H10O4 | 283.8 | 1 | 1.190 | 0.43 | 0.309 |
metilēnhlorīds | CH2Cl2 | 39.8 | -96.7 | 1.326 | 1.32 | 0.309 |
2-pentanone | C 5H 10O | 102.3 | -76.9 | 0.809 | 4.3 | 0.321 |
2-butanone | C4H8O | 79.6 | -86.3 | 0.805 | 25.6 | 0.327 |
1,2-dichloroethane | C2H4Cl2 | 83.5 | -35.4 | 1.235 | 0.87 | 0.327 |
benzonitrile | C7H5N | 205 | -13 | 0.996 | 0.2 | 0.333 |
Acetona | C3H6O | 56.2 | -94.3 | 0.786 | M | 0.355 |
dimethylformamide (DMF) | C3H7NĒ | 153 | -61 | 0.944 | M | 0.386 |
t-butyl alcohol | C4H10O | 82.2 | 25.5 | 0.786 | M | 0.389 |
aniline | C6H7N | 184.4 | -6.0 | 1.022 | 3.4 | 0.420 |
dimethylsulfoxide (DMSO) | C2H6OS | 189 | 18.4 | 1.092 | M | 0.444 |
acetonitrile | C2H3N | 81.6 | -46 | 0.786 | M | 0.460 |
3-pentanol | C 5H 12O | 115.3 | -8 | 0.821 | 5.1 | 0.463 |
2-pentanol | C 5H 12O | 119.0 | -50 | 0.810 | 4.5 | 0.488 |
2-butanol | C4H10O | 99.5 | – 114.7 | 0.808 | 18.1 | 0.506 |
cyclohexanol | C 6H 12O | 161.1 | 25.2 | 0.962 | 4.2 | 0.509 |
1-octanol | C 8H 18O | 194.4 | -15 | 0.827 | 0.096 | 0.537 |
2-propanol | C3H8O | 82.4 | -88.5 | 0.785 | M | 0.546 |
1-heptanol | C 7H 16O | 176.4 | -35 | 0.819 | 0.17 | 0.549 |
Es-butanol | C4H10O | 107.9 | -108.2 | 0.803 | 8.5 | 0.552 |
1-hexanol | C 6H 14O | 158 | -46.7 | 0.814 | 0.59 | 0.559 |
1-pentanol | C 5H 12O | 138.0 | -78.2 | 0.814 | 2.2 | 0.568 |
acetyl acetone | C5H8O2 | 140.4 | -23 | 0.975 | 16 | 0.571 |
ethyl acetoacetate | C6H10O3 | 180.4 | -80 | 1.028 | 2.9 | 0.577 |
1-butanol | C4H10O | 117.6 | -89.5 | 0.81 | 7.7 | 0. 586 |
benzyl alcohol | C 7H 8O | 205.4 | -15.3 | 1.042 | 3.5 | 0.608 |
1-propanol | C3H8O | 97 | -126 | 0.803 | M | 0.617 |
etiķskābe | C2H4O2 | 118 | 16.6 | 1.049 | M | 0.648 |
2-aminoethanol | C2H7NĒ | 170.9 | 10.5 | 1.018 | M | 0.651 |
Etanola | C2H6O | 78.5 | -114.1 | 0.789 | M | 0.654 |
diethylene glycol | C4H10O3 | 245 | -10 | 1.118 | M | 0.713 |
metanols | CH4O | 64.6 | -98 | 0.791 | M | 0.762 |
etilēnglikols | C2H6O2 | 197 | -13 | 1.115 | M | 0.790 |
Glicerīns | C3H8O3 | 290 | 17.8 | 1.261 | M | 0.812 |
water, heavy | D2O | 101.3 | 4 | 1.107 | M | 0.991 |
Ūdens | H2O | 100.00 | 0.00 | 0.998 | M | 1.000 |