Ultraschallveredelung von Metallschmelzen

  • Der Eintrag von Hochleistungs-Ultraschall in Metallschmelzen und Legierungen hat mehrere positive Effekte, z.B. Kornfeinung, Entgasung und verbesserte Filtrierung.
  • Die Ultraschallbehandlung fördert die nicht-dendritische Erstarrung in flüssigen und halbfesten Metallen.
  • Die Beschallung bewirkt eine deutliche mikrostrukturelle Feinerung der dendritischen Körner und intermetallischen Primärpartikel.
  • Hochleistungs-Ultraschall kann darüber hinaus gezielt eingesetzt werden, um die Metallporosität herabzusetzen oder aber meso-poröse Strukturen herzustellen.
  • Mittels Hochleistungs-Ultraschall wird die Qualität von Metallgußteilen verbessert.

Erstarrung von Metallschmelzen mit Ultraschall

Die Bildung von nicht-dendritischen Strukturen während der Erstarrung von Metallschmelzen beeinflusst die Metallqualität positiv, so Festigkeit, Duktilität/Zähigkeit und/oder Härte verbessert werden.
Ultraschall verbessert die Keimbildung: Die akustische Kavitation und ihre intensiven Scherkräfte erhöhen die Keimbildungsstellen und die Anzahl der Keime in der Schmelze. Die Ultraschallbehandlung von Schmelzen führt zu einer heterogenen Keimbildung und der Fragmentierung von Dendriten, so dass das Endprodukt eine deutlich höhere Kornfeinung aufweist.
Durch die Ultraschall-Kavitation werden nichtmetallische Verunreinigungen und Einschlüsse in der Schmelze gleichmäßig dispergiert und benetzt. Diese Verunreinigungen dienen als Keimbildungspunkte, welche Ausgangspunkte für die Erstarrung sind. Da sich diese Keimbildungspunkte vor der Erstarrungfront befinden, tritt kein Dendritenwachstum auf.

Intensive Ultraschallbehandlung verbessert das Korngefüge in Metallschmelzen und hilft so, die Qualitätsstandards für Druckguss zu erfüllen.

Makrogefüge einer Ti-Legierung nach Ultraschallbehandlung. Die Ultraschallbehandlung führt zu einer deutlich verfeinerten Kornstruktur.

Informationen anfordern




Beachten Sie unsere Datenschutzerklärung.


Die Ultraschall-Nanostrukturierung von Metallen und Zeolithen ist eine äußerst wirksame Technik zur Herstellung von Hochleistungskatalysatoren.

Dr. Andreeva-Bäumler, Universität Bayreuth, arbeitet mit dem Ultraschallgerät UIP1000hdT an der Nanostrukturierung von Metallen.

Auswirkungen von Ultraschall auf die Vickershärte von Legierungen: Die Ultraschallbehandlung verbessert die Vickers-Mikrohärte in Metall

Auswirkungen von Ultraschall auf die Vickershärte von Legierungen: Die Ultraschallbehandlung verbessert die Vickers-Mikrohärte in Metall
(Studie und Grafik: ©Ruirun et al., 2017)

 
Dendriten-Fragmentierung: Das Schmelzen der Dendriten beginnt in der Regel an der Wurzel aufgrund eines lokalen Temperaturanstiegs und einer Entmischung. Die Beschallung erzeugt starke Konvektion (Wärmeübertragung durch Massenbewegung einer Flüssigkeit) und Stoßwellen in der Schmelze, so dass die Dendriten fragmentiert werden. Die Konvektion kann die Fragmentierung der Dendriten aufgrund extremer lokaler Temperaturen und Zusammensetzungsschwankungen fördern und begünstigt die Diffusion der gelösten Stoffe. Die Kavitationsstoßwellen unterstützen das Zerbrechen dieser Schmelzwurzeln.

Ultraschall-Entgasung von Legierungen

Das Entgasen ist ein weiterer wichtiger Ultraschalleffekt, welcher bei der Herstellung von Metallen und Legierungen genutzt wird. Ultraschall kann sowohl in flüssige als auch halbfeste Metalle und Legierungen eingetragen werden, um Luft- und Gasblasen zu entfernen. Durch den Eintrag intensiver Ultraschallwellen werden alternierende Niederdruck- und Hochdruck-Zyklen erzeugt. Während der Niederdruck-Zyklen entstehen in der Flüssigkeit bzw. Slurry winzige Vakuumblasen. Diese Vakuumblasen fungieren als Keimpunkte für die Bildung von Wasserstoff- und Wasserdampfblasen. Mit zunehmender Größe erhalten die Blasen vermehrten Auftrieb und steigen an die Oberfläche der Schmelze, so dass das Gas entfernt und die Gaskonzentration in der Schmelze reduziert wird.
Durch die Ultraschall-Entgasung wird die Porosität des Metalls verringert, wodurch eine höhere Materialdichte in der Metall-Legierung erzielt wird.
Das Ultraschall-Entgasen von Aluminiumlegierungen erhöht die Zugfestigkeit und Duktilität des Materials. Industrielle Hochleistungs-Ultraschallsysteme gelten im Vergleich zu anderen kommerziellen Entgasungsmethoden im Hinblick auf Effektivität und Prozessdauer als hervorragendes Verfahren. Zudem wird durch die abgesenkte Viskosität der Schmelze der Prozess das Gießen in Casting-Formen deutlich verbessert.
 

Die Ultraschallbehandlung verbessert die Druckfestigkeit von Metallschmelzen und damit die Metallqualität erheblich.

Druckeigenschaften von Ti44Al6Nb1Cr2V bei verschiedenen Beschallungszeiten. Die Beschallung verbessert die Druckfestigkeit erheblich.
(Studie und Grafik: ©Ruirun et al., 2017)

Die keramische Sonotrode BS4D22L3C ist eine Spezialsonotrode zur Beschallung von Hochtemperaturflüssigkeiten wie Aluminiumschmelzen (z. B. zum Mischen und Entgasen). Hergestellt von Hielscher Ultrasonics

Die keramische Sonotrode BS4D22L3C ist eine spezielle Sonotrode, die sich zur Beschallung von Hochtemperaturflüssigkeiten wie geschmolzenem Aluminium eignet (z. B. zum Mischen und Entgasen).

Sonokapillar-Effekte während der Filtration

Die Ultraschall-Kapillarwirkung in flüssigen Metallen ist der treibende Effekt zur Entfernung von Oxideinschlüssen bei der ultraschallunterstützten Filtration von Schmelzen. (Eskin et al. 2014: 120ff.)
Bei der Filtration metallischer Schmelzen werden nicht-metallische Verunreinigungen aus der Schmelze entfernt. Die Schmelze passiert während des Filtratinsprozesses mehrere Gewebefilter (z.B. Glasfaser-Filter), mit deren Hilfe unerwünschte Einschlüsse abgetrennt werden. Je kleiner die Maschenweite, desto besser ist das Filtrationsergebnis.
Unter normalen Bedingungen ist es nicht möglich, dass eine metallische Schmelze einen zweischichtigen Filter mit einer sehr kleinen Porengröße von 0,4x0,4 mm passiert. Bei einer ultraschall-gestützten Filtration wird es allerdings aufgrund des Sonokapillar-Effektes möglich, dass die Schmelze den Filter passieren kann. Die Filterkapillaren halten nicht-metallische Verunreinigungen von 1 – 10μm zurück. Mittels Ultraschall-Filtration wird eine verbesserten Reinheit der Legierung erreicht und eine unerwünschte Porosität durch Wasserstoffporen wird vermieden, wodurch eine Dauerfestigkeit der Legierung erreicht wird.
Eskin et al. (2014: 120ff.) hat in seinen Forschungsergebnissen dargelegt, dass es mittels Ultraschall-Filtration möglich ist, die Aluminiumlegierungen AA7075, AA2024 und AA7055 zu reinigen. Hierzu wurden die Schmelzen durch einen mehrschichtigen Glasfaserfilter (mit bis zu 9 Lagen) mit einer Filterporengröße von 0,6×0.6mm filtriert. Wenn die Ultraschall-Filtration mit dem Einsatz von Impfmitteln kombiniert wird, ist zudem eine gleichzeitige Kornfeinung zu beobachten.

Ultraschall-Verstärkung von Metall-Legierungen

Ultraschall ist nachweislich ein hochwirksames Verfahren, um Nanopartikel gleichmäßig in Slurries zu dispergieren. Deshalb gehören Ultraschalldispergierer zu den am häufigsten eingesetzten Dispergiermethoden, um nano-verstärkte Verbundwerkstoffe herzustellen.
Nano-Partikel (z.B. Al2O3/ SiC, CNTs) werden eingesetzt, um Werkstoffe zu verstärken. Die Nanopartikel werden der flüssigen Legierung hinzugefügt und mittels Ultraschall dispergiert. Die Ultraschall-Kavitation und -Scherkräfte verbessern die Desagglomerierung und Benetzbarkeit der Partikel, wodurch erhöhte Zugfestigkeit, Festigkeit und Dehnung erzielt werden.

Ultraschallgerät UIP2000hdT (2kW) mit Cascatrode

Ultraschallgeräte für Heavy-Duty-Anwendungen

Die Anwendung von Leistungsultraschall in der Metallurgie erfordert robuste, zuverlässige Ultraschallsysteme, die in anspruchsvollen Umgebungen installiert werden können. Hielscher Ultrasonics liefert Ultraschallgeräte in Industriequalität für Installationen in anspruchsvollen Anwendungen und rauen Umgebungen. Alle unsere Ultraschallgeräte sind für den 24/7-Betrieb ausgelegt. Hielscher-Hochleistungs-Ultraschallsysteme zeichnen sich durch Robustheit, Zuverlässigkeit und präzise Steuerbarkeit aus.
Anspruchsvolle Prozesse – wie z.B die Verarbeitung von Metallschmelzen – erfordern die Fähigkeit zu intensiver Beschallung. Die industriellen Ultraschallprozessoren von Hielscher Ultrasonics liefern sehr hohe Amplituden. Amplituden von bis zu 200µm können problemlos im 24/7-Betrieb gefahren werden. Für noch höhere Amplituden sind kundenspezifische Ultraschallsonotroden erhältlich.
Für die Beschallung von sehr hohen Flüssigkeits- und Schmelztemperaturen bietet Hielscher verschiedenen Sonotroden und individuelle Accessoires, um optimale Ultraschallergebnisse für Ihren Prozess zu sicherzustellen.
In der folgenden Tabelle finden Sie die ungefähre Verarbeitungskapazität unserer Ultraschallhomogenisatoren:

Batch-Volumen Durchfluss Empfohlenes Ultraschallgerät
10 bis 2000ml 20 bis 400ml/min UP200Ht, UP400St
0.1 bis 20l 0,2 bis 4l/min UIP2000hdT
10 bis 100l 2 bis 10l/min UIP4000
n.a. 10 bis 100l/min UIP16000
n.a. größere Cluster aus UIP16000

Kontaktieren Sie uns! / Fragen Sie uns!

Fordern Sie weitere Informationen an!

Bitte nutzen Sie das Formular, um weitere Informationen über unsere Ultraschallgeräte und -prozesse anzufordern. Gerne bieten wir Ihnen ein passendes Ultraschallsystem für Ihre Anwendung an.









Bitte beachten Sie unsere Datenschutzerklärung.




Literatur

  • Eskin, Georgy I.; Eskin, Dmitry G. (2014): Ultrasonic Treatment of Light Alloy Melts. CRC Press,Technology & Engineering 2014.
  • Jia, S.; Xuan, Y.; Nastac, L.; Allison, P.G.; Rushing, T.W: (2016): Microstructure, mechanical properties and fracture behavior of 6061 aluminium alloy-based nanocomposite castings fabricated by ultrasonic processing. International Journal of Cast Metals Research, Vol. 29, Iss. 5: TMS 2015 Annual Meeting and Exhibition 2016. 286-289.
  • Ruirun, C. et al. (2017): Effects of ultrasonic vibration on the microstructure and mechanical properties of high alloying TiAl. Sci. Rep. 7, 2017.
  • Skorb, E.V.; Andreeva, D.V. (2013): Bio-inspired ultrasound assisted construction of synthetic sponges. J. Mater. Chem. A, 2013,1. 7547-7557.
  • Tzanakis,I.; Xu, W.W.; Eskin, D.G.; Lee, P.D.; Kotsovinos, N. (2015): In situ observation and analysis of ultrasonic capillary effect in molten aluminium . Ultrasonic Sonochemistry 27, 2015. 72-80.
  • Wu, W.W:; Tzanakis, I.; Srirangam, P.; Mirihanage, W.U.; Eskin, D.G.; Bodey, A.J.; Lee, P.D. (2015): Synchrotron Quantification of Ultrasound Cavitation and Bubble Dynamics in Al-10Cu Melts.

Wissenswertes

Hochleistungs-Ultraschall und Kavitation

Werden hochintensive Ultraschallwellen in Flüssigkeiten oder Slurries eingetragen, tritt das Phänomen der Ultraschall- Kavitation auf.
Mittels hochintensivem, niederfrequentem Ultraschall können in Flüssigkeiten und Slurries gezielt Kavitationsblasen erzeugt werden. Die hochenergetischen Ultraschallwellen erzeugen abwechselnde Niederdruck- und Hochdruck-Zyklen in der Flüssigkeit. Durch diese rasch alternierenden Druckschwankungen werden in der Flüssigkeit Hohlräume, die sogenannte Kavitationsblasen, erzeugt. Die mittels Ultraschallkavitation erzeugten Blasen fungieren als chemische Mikroreaktoren, in welchen extrem hohe Temperaturen und Drücke auf mikroskopischen Ebene herrschen. Dadurch werden chemische Veränderungen möglich, z.B. werden freie Radikale erzeugt. Für die Chemie und Materialforschung bieten Ultraschall und Ultraschallkavitation daher ein einzigartiges Potenzial: In den Kavitationsblasen herrschen lokal auf makroskopischer Ebene extrem hohe Temperaturen (bis zu 5000 K), extrem hohe Drücke (500atm) und Durckschwankungen sowie sehr hohe Heiz-/Abkühlraten, während das gesamte System (die Flüssigkeit bzw. Slurry) auf Raumtemperatur und Umgebungsdruck bleibt. Diese extremen Konditionen in den ultraschall-generierten Mikroreaktoren bieten hervorragenden Bedingungen für Katalysereaktionen. (vgl. Skorb, Andreeva 2013)
Ultraschallbehandlungen beruhen hauptsächlich auf Kavitationseffekten. In der Metallurgie ist die Beschallung eine äußerst vorteilhafte Technik zur Verbesserung des Gießens von Metallen und Legierungen.
Neben der Behandlung von Metallschmelzen wird die Beschallung auch zur Erzeugung von schwammartigen Nanostrukturen und Nanomustern auf festen Metalloberflächen wie Titan und Legierungen eingesetzt. Diese ultraschallnanostrukturierten Titan- und Legierungsteile eignen sich hervorragend als Implantate mit verbesserter osteogener Zellproliferation. Lesen Sie mehr über die Nanostrukturierung von Titanimplantaten mit Ultraschall!

Wir besprechen Ihr Verfahren gerne mit Ihnen.

Lassen Sie uns in Kontakt treten.