Formulazione a ultrasuoni di vettori di farmaci lipidici nanostrutturati
Nanostructured lipid carriers (NLCs) are an advanced form of nano-sized drug delivery systems featuring a lipid core and a water-soluble shell. NLCs have a high stability, protect the active bio-molecules against degradation and offer sustained drug release. Ultrasonication is a reliable, efficient and simple technique to produce loaded nanostructured lipid carriers.
Ultrasonic Preparation of Nanostructured Lipid Carriers
Nanostructure lipid carriers (NLCs) contain solid lipid, liquid lipid, and surfactant in an aqueous medium, which gives them good solubility and bioavailability characteristics. NLCs are widely used to formulate stable drug carrier systems with a high bioavailability and sustained drug release. NLCs have a broad range of applications ranging from oral to parenteral administration including topical/transdermal, ophthalmic (ocular), and pulmonary administration.
Ultrasonic dispersion and emulsification is a reliable and efficient technique to prepare nanostructured lipid carriers loaded with active compounds. The ultrasonic NLC preparation has the major advantage of not requiring an organic solvent, large amounts of surfactant or additive compounds. Ultrasonic NLC formulation is a relatively simple method as the melting lipid is added to the solution of surfactant and then sonicated.
Exemplary Protocols for Ultrasonically Loaded Nanostructure Lipid Carriers
Dexamethasone-loaded NLCs via Sonication
A non-toxic potential ophthalmic NLC system was prepared under ultrasonication, which resulted in a narrow size distribution, high Dexamethasone entrapment efficacy, and improved penetration. NLC systems were ultrasonically prepared using a Hielscher UP200S ultrasonicator and Compritol 888 ATO, Miglyol 812N, and Cremophor RH60 as components.
Il lipide solido, il lipide liquido e il tensioattivo sono stati fusi con un agitatore magnetico a 85ºC. Quindi, il desametasone è stato aggiunto alla miscela lipidica fusa e disperso. L'acqua pura è stata riscaldata a 85 ºC e le due fasi sono state sonicate (con un'ampiezza del 70% per 10 minuti) con la miscela di tensioattivi. Hielscher UP200S ultrasonic homogenizer. The NLC system was cooled in an ice bath.
The ultrasonically prepared NLCs exhibit a narrow size distribution, high DXM entrapment efficacy, and improved penetration.
I ricercatori raccomandano l'uso di una bassa concentrazione di tensioattivi e di lipidi (ad esempio, 2,5% per i tensioattivi e 10% per i lipidi totali) perché in questo modo i parametri critici di stabilità (Zave, ZP, PDI) e la capacità di carico del farmaco (EE%) sono adatti, mentre la concentrazione dell'emulsionante può rimanere a livelli bassi.
(cf. Kiss et al. 2019)
Retinyl Palmitate-loaded NLCs via Sonication
Retinoid is a widely used ingredient in dermatology therapies of wrinkles. Retinol and retinyl palmitate are two compounds from the retinoid group which have an ability to induce the thickness of epidermis and effective as anti-wrinkle agent.
La formulazione NLC è stata preparata con il metodo degli ultrasuoni. La formulazione conteneva 7,2% di cetil palmitato, 4,8% di acido oleico, 10% di Tween 80, 10% di glicerina e 2% di retinil palmitato. Per produrre NLC caricati con retinil palmitato sono stati eseguiti i seguenti passaggi: La miscela di lipidi fusi viene miscelata con il tensioattivo, il co-surfattante, la glicerina e l'acqua deionizzata a 60-70°C. La miscela viene agitata con un'alta temperatura di fusione. Questa miscela viene agitata con un miscelatore ad alta velocità a 9800 giri al minuto per 5 minuti. Dopo la formazione della pre-emulsione, questa viene immediatamente sonicata con un omogeneizzatore a ultrasuoni a sonda per 2 minuti. Quindi l'NLC ottenuto è stato mantenuto a temperatura ambiente per 24 ore. L'emulsione è stata conservata a temperatura ambiente per 24 ore e sono state misurate le dimensioni delle nanoparticelle. La formula NLC ha mostrato dimensioni delle particelle nell'intervallo 200-300 nm. Il NLC ottenuto ha un aspetto giallo pallido, una dimensione dei globuli di 258±15,85 nm e un indice di polidispersità di 0,31±0,09. L'immagine TEM sottostante mostra gli NLC caricati con retinil palmitato preparati a ultrasuoni.
(cf. Pamudji et al. 2015)
Zingiber zerumbet-loaded NLCs via Sonication
Nanostructured lipid carriers consist of a mixture of solid-lipid, liquid-lipid and surfactant. The are excellent drug delivery systems to administer bioactive substances with poor water-solubility and to increase their bioavailability significantly.
Per formulare i NLC caricati con Zingiber zerumbet sono stati eseguiti i seguenti passaggi. L'1% di lipidi solidi, ossia il gliceril monostearato, e il 4% di lipidi liquidi, ossia l'olio di cocco vergine, sono stati miscelati e fusi a 50°C per ottenere una fase lipidica omogenea e chiara. Successivamente, alla fase lipidica è stato aggiunto l'1% di olio di Zingiber zerumbet, mantenendo la temperatura costantemente 10°C al di sopra della temperatura di fusione del monostearato di glicerile. Per la preparazione della fase acquosa, sono stati miscelati acqua distillata, Tween 80 e lecitina di soia nel giusto rapporto. La miscela acquosa è stata immediatamente aggiunta alla miscela lipidica per formare una pre-emulsione. La pre-emulsione è stata poi omogeneizzata con un omogeneizzatore ad alto numero di giri per 1 minuto. Infine, la dispersione di NLC è stata raffreddata in un bagno di acqua ghiacciata a temperatura ambiente (25±1°C) per raffreddare la sospensione nel bagno freddo e prevenire l'aggregazione delle particelle. I NLC sono stati conservati a 4°C.
I NLC caricati con Zingiber zerumbet presentano una dimensione nanometrica di 80,47±1,33, un indice di polidispersità stabile di 0,188±2,72 e una carica di potenziale zeta di -38,9±2,11. L'efficienza di incapsulamento mostra la capacità del vettore lipidico di incapsulare l'olio di Zingiber zerumbet con un'efficienza superiore all'80%.
(cf. Rosli et al. 2015)
Valsaratan-loaded NLCs via Sonication
Il Valsaratan è un bloccante dei recettori dell'angiotensina II utilizzato come farmaco antipertensivo. Il Valsartan ha una bassa biodisponibilità, pari a circa il 23%, solo a causa della sua scarsa idrosolubilità. L'utilizzo del metodo di fusione-emulsificazione a ultrasuoni ha permesso di preparare NLC caricati con Valsaratan, caratterizzati da una biodisponibilità significativamente migliorata.
Simply, oily solution of Val was mixed with certain quantity of a melted lipid material at temperature 10°C above the lipid melting point. An aqueous surfactant solution was prepared by dissolving certain weights of Tween 80 and sodium deoxycholate. The surfactant solution was further heated to the same temperature degree and mixed with the oily lipid drug solution by probe-sonication for 3 min. to form an emulsion. Then, the formed emulsion was dispersed in cooled water by magnetic stirring for 10 min. The formed NLC were separated by centrifugation. Samples from the supernatant were taken and analyzed for the concentration of Val using a validated HPLC method.
Il metodo di fusione-emulsificazione a ultrasuoni presenta una serie di vantaggi, tra cui la semplicità con condizioni di stress minime e l'assenza di solventi organici tossici. L'efficienza massima di intrappolamento raggiunta è stata del 75,04%.
(cf. Albekery et al. 2017)
Other active compounds such as paclitaxel, clotrimazol, domperidone, puerarin, and meloxicam were also successfully incorporated into solid-lipid nanoparticles and nanostructured lipid carriers using ultrasonic techniques. (cf. Bahari and Hamishehkar 2016)
Ultrasonic Cold Homogenisation
When the cold homogenization technique is used to prepare nanostructured lipid carriers, the pharmacologically active molecules, i.e. drug, are dissolved in the lipid melt and then quickly cooled using liquid nitrogen or dry ice. During cooling, the lipids solidify. The solid lipid mass is then ground nanoparticle size. The lipid nanoparticles are dispersed in a cold surfactant solution, yielding a cold pre-suspension. Finally, this suspension is sonicated, often using an ultrasonic flow cell reactor, at room temperature.
Since the substances are only heated once in the first step, ultrasonic cold homogenization is mainly used to formulate heat-sensitive drugs. As many bioactive molecules and pharmaceutical compounds are prone to heat degradation, ultrasonic cold homogenization is a widely used application. A further advantage of the cold homogenisation technique is the avoidance of an aqueous phase, which makes it easier to encapsulate hydrophilic molecules, which might otherwise partition from the liquid lipid phase to the water phase during hot homogenization.
Ultrasonic Hot Homogenisation
When sonication is used as hot homogenization technique, the molten lipids and the active compound (i.e. pharmacologically active ingredient) are dispersed in a hot surfactant under intense stirring to obtain a pre-emulsion. For the hot homogenization process it is important that both solutions, the lipid/drug suspension and the surfactant have been heated to same temperature (approx. 5–10°C above the melting point of the solid lipid). In the second step, the pre-emulsion is then treated with high-performance sonication whilst maintaining the temperature.
High-Performance Ultrasonicators for Nanostructured Lipid Carriers
Hielscher Ultrasonics’ powerful ultrasonic systems are used worldwide in pharmaceutical R&D and production to produce high-quality nano drug carriers such as solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanoemulsions and nanocapsules. To meet its customers’ demands, Hielscher supplies ultrasonicators from the compact, yet powerful hand-held lab homogeniser and bench-top ultrasonicators to fully industrial ultrasonic systems for the production of high-volumes of pharmaceutical formulations. A broad range of ultrasonic sonotrodes and reactors are available to ensure an optimal setup for your production of nanostructured lipid carriers (NLCs). The robustness of Hielscher’s ultrasonic equipment allows for 24/7 operation at heavy duty and in demanding environments.
Per consentire ai nostri clienti di rispettare le buone pratiche di fabbricazione (GMP) e di stabilire processi standardizzati, tutti gli ultrasonori digitali sono dotati di un software intelligente per l'impostazione precisa dei parametri di sonicazione, il controllo continuo del processo e la registrazione automatica di tutti i parametri di processo importanti su una scheda SD integrata. L'alta qualità del prodotto dipende dal controllo del processo e da standard di lavorazione costantemente elevati. Gli ultrasuonatori Hielscher vi aiutano a monitorare e standardizzare il vostro processo!
Hielscher Ultrasonics’ industrial ultrasonic processors can deliver very high amplitudes. Amplitudes of up to 200µm can be easily continuously run in 24/7 operation. For even higher amplitudes, customized ultrasonic sonotrodes are available. The robustness of Hielscher’s ultrasonic equipment allows for 24/7 operation at heavy duty and in demanding environments.
La tabella seguente fornisce un'indicazione della capacità di lavorazione approssimativa dei nostri ultrasonori:
Volume di batch | Portata | Dispositivi raccomandati |
---|---|---|
1 - 500mL | 10 - 200mL/min | UP100H |
10 - 2000mL | 20 - 400mL/min | UP200Ht, UP400St |
0,1 - 20L | 0,2 - 4L/min | UIP2000hdT |
10 - 100L | 2 - 10L/min | UIP4000hdt |
n.a. | 10 - 100L/min | UIP16000 |
n.a. | più grande | cluster di UIP16000 |
Contattateci! / Chiedi a noi!
Letteratura / Riferimenti
- Eszter L. Kiss, Szilvia Berkó, Attila Gácsi, Anita Kovács, Gábor Katona, Judit Soós, Erzsébet Csányi, Ilona Gróf, András Harazin, Mária A. Deli, Mária Budai-Szűcs (2019): Design and Optimization of Nanostructured Lipid Carrier Containing Dexamethasone for Ophthalmic Use. Pharmaceutics. 2019 Dec; 11(12): 679.
- Iti Chauhan , Mohd Yasir, Madhu Verma, Alok Pratap Singh (2020): Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv Pharm Bull, 2020, 10(2), 150-165.
- Pamudji J. S., Mauludin R, Indriani N. (2015): Development of Nanostructure Lipid Carrier Formulation Containing of Retinyl Palmitate. Int J Pharm Pharm Sci, Vol 8, Issue 2, 256-26.
- Akanksha Garud, Deepti Singh, Navneet Garud (2012): Solid Lipid Nanoparticles (SLN): Method, Characterization and Applications. International Current Pharmaceutical Journal 2012, 1(11): 384-393.
- Rosli N. A., Hasham R., Abdul Azizc A., Aziz R. (2015): Formulation and characterization of nanostructured lipid carrier encapsulated Zingiber zerumbet oil using ultrasonication. Journal of Advanced Research in Applied Mechanics Vol. 11, No. 1, 2015. 16-23.
- Albekery M. A., Alharbi K. T. , Alarifi S., Ahmad D., Omer M. E, Massadeh S., Yassin A. E. (2017): Optimization of a nanostructured Lipid Carrier System for Enhancing the Biopharmaceutical Properties of Valsaratan. Digest Journal of Nanomaterials and Biostructures Vol. 12, No. 2, April – June 2017. 381-389.
- Leila Azhar Shekoufeh Bahari; Hamed Hamishehkar (2016): The Impact of Variables on Particle Size of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers; A Comparative Literature Review. Advanced Pharmaceutical Bulletin 6(2), 2016. 143-151.
Particolarità / Cose da sapere
Advanced Nano-Sized Drug Carriers
Nanoemulsions, liposomes, niosomes, polymeric nano-particles, solid-lipid nanoparticles, and nanostructured lipid nanoparticles are used as advanced drug delivery systems to improve bioavailability, reduce cytotoxicity and to achieve sustained drug release.
The term solid-lipid-based nanoparticles (SLBNs) comprises the two types of nano-sized drug carriers, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). SLNs and NLCs are distinguished by the composition of solid particle matrix:
Solid-lipid nanoparticles (SLNs), also known as lipospheres or solid lipid nanospheres, are submicron particles with an average size between 50 and 100nm. SLNs are made from lipids that remain solid at room and body temperature. The solid lipid is used as a matrix material, in which drugs are encapsulated. Lipids for the preparation of SLNs can be selected from a variety of lipids, including mono-, di-, or triglycerides; glyceride mixtures; and lipid acids. The lipid matrix is then stabilized by biocompatible surfactants.
Nanostructured lipid carriers (NLCs) are lipid-based nanoparticles made of a solid lipid matrix, which is combined with liquid lipids or oil. The solid lipid provide a stable matrix, which immobilizes the bioactive molecules, i.e. drug, and prevents the particles from aggregating. The liquid lipid or oil droplets within the solid lipid matrix enhance the drug loading capacity of the particles.