Nanodiamonds Dispersed in Aqueous Suspension with Sonication
Nanodiamond dispersions are efficient and quickly produced using ultrasonic dispersers. Ultrasonic deaggregation and dispersion of nanodiamonds can be reliably performed in an aqueous suspension. The ultrasonic dispersion technique uses salt for pH modification and is thereby a facile, inexpensive, and contaminant-free technique, which can be easily used on industrial scale.
How Does Ultrasonic Milling and Dispersion of Nanodiamonds Work?
Ultrasonic dispersion uses the nanodiamonds itself as milling media. Acoustic cavitation generated by high-power ultrasound waves creates high-speed liquid streaming. These liquid streams accelerate the particles (e.g., diamonds) in the slurry so that the particles collide with up to 280km/s and shatter into minute nano-sized particles. This makes ultrasonicmilling and dispersion a facile, inexpensive, and contaminant-free technique, which reliably deagglomerates nanodiamond into nano-sized particles stable in aqueous colloidal solution in a wide pH range. Salt (sodium chloride) is utilized to stabilize the nanodiamonds in an aqueous slurry.
- highly efficient nano-sized dispersion
- rapid
- non-toxic, solvent-free
- no difficult-to-remove impurities
- energy- and cost-saving
- linear scalability to any production size
- Rispettoso dell'ambiente
Ultrasonic Nanodiamond Milling Excels Bead Mills
Probe-type ultrasonicators are highly efficacious mills and are an established milling technique for the large-scale production of nanodiamond suspensions on industrial scale. Since ultrasonic mills utilize the nanodiamonds as milling media, contamination through milling media, e.g. from zirconia beads, is completely avoided. Instead, ultrasonic cavitational forces accelerate the particles so that the nanodiamonds collide violently with each other and break down to uniform nano-size. This ultrasonically induced interparticle collision is a highly efficient and reliable method for the production of uniformly distributed nanodispersions.
The ultrasonic dispersion and deaggregation method uses water-soluble, nontoxic, and non-contaminating additives such as sodium chloride or sucrose for pH regulation and stabilization of the ultrasonic dispersion. These crystal structures of sodium chloride or sucrose act additionally as milling media thereby supporting the ultrasonic milling procedure. When the milling process is completed, this additives can be easily removed by a simple rinsing with water, whichis a remarkable advantage over a process ceramic beads. Traditional bead milling such as attritors use insoluble ceramic milling media (e.g. balls, beads, or pearls), whose abrased residuals contaminate the final dispersion. Removal of contamination caused by milling media involves complex after-processing and is time-consuming as well as costly.
Exemplary Protocol for Ultrasonic Nanodiamond Dispersion
Salt-Assisted Ultrasonic Deaggregation of Nanodiamonds in Water:
Una miscela di 10 g di cloruro di sodio e 0,250 g di polvere di nanodiamante è stata brevemente macinata a mano con un mortaio e un pestello di porcellana e posta in una fiala di vetro da 20 mL insieme a 5 mL di acqua DI. Il campione preparato è stato sonicato con un ultrasuonatore a sonda per 100 minuti con una potenza di uscita del 60% e un ciclo di lavoro del 50%. Dopo la sonicazione, il campione è stato equamente diviso tra due provette da centrifuga Falcon in plastica da 50 mL e disperso in acqua distillata fino a un volume totale di 100 mL (2 × 50 mL). Ogni campione è stato poi centrifugato con una centrifuga Eppendorf 5810-R a 4000 rpm e 25°C per 10 minuti e il surnatante chiaro è stato scartato. I precipitati di ND umidi sono stati quindi ridisposti in acqua distillata (100 mL di volume totale) e centrifugati una seconda volta a 12000 rpm e 25 °C per 1 h. Ancora una volta il surnatante chiaro è stato scartato e i precipitati di nanodiamante umidi sono stati ridisposti, questa volta in 5 mL di acqua distillata per la caratterizzazione. Un saggio standard di AgNO3 ha mostrato la completa assenza di Cl- in nanodiamanti deag gregati ad ultrasuoni con sale, lavati con acqua distillata due volte come descritto sopra. Dopo l'evaporazione dell'acqua dai campioni, è stata osservata la formazione di "chips" di nanodiamante solido nero con una resa di ∼200 mg o dell'80% della massa iniziale di nanodiamante. (vedi immagine sotto)
(cf. Turcheniuk et al., 2016)
High-Performance Ultrasonicators for Nanodiamond Dispersions
Hielscher Ultrasonics designs, manufactures and distributes high-performance ultrasonic milling and dispersing equipment for heavy-duty applications such as the manufacturing of nanodiamond slurries, polishing media and nanocomposites. Hielscher ultrasonicators are used world-wide for dispersing nano-materials into aqueous colloidal suspensions, polymers, resins, coatings, and other high-performance materials.
Hielscher ultrasonic dispersers are reliable and efficient in processing low to high viscosities. Depending on the input materials and the targeted final particle size, ultrasonic intensity can be precisely adjusted for optimal process results.
In order to process viscous pastes, nano-materials and high solid concentrations, the ultrasonic disperser must be capable to produce continuously high amplitudes. Hielscher Ultrasonics’ industrial ultrasonic processors can deliver very high amplitudes in continuous operation under full load. Amplitudes of up to 200µm can be easily run in 24/7 operation. The option to operate an ultrasonic disperser at high amplitudes and to adjust the amplitude precisely is necessary to adapt the ultrasonic process conditions for the optimum formulation of highly filled nano-slurries, nano-reinforced polymer mixtures and nanocomposites.
Oltre all'ampiezza degli ultrasuoni, la pressione è un altro parametro di processo molto importante. In presenza di pressioni elevate, l'intensità della cavitazione ultrasonica e delle sue forze di taglio viene intensificata. I reattori a ultrasuoni Hielscher possono essere pressurizzati, ottenendo così risultati di sonicazione più intensi.
Process monitoring and data recording are important for continuous process standardization and product quality. Pluggable pressure and temperature sensors wire to the ultrasonic generator for monitoring and controlling the ultrasonic dispersion process. All important processing parameters such as ultrasonic energy (net + total), temperature, pressure and time are automatically protocolled and stored onto a built-in SD-card. By accessing the automatically recorded process data, you can revise previous sonication runs and evaluate the process results.
Un'altra caratteristica di facile utilizzo è il controllo remoto via browser dei nostri sistemi digitali a ultrasuoni. Tramite il controllo remoto via browser è possibile avviare, arrestare, regolare e monitorare il processore a ultrasuoni a distanza da qualsiasi luogo.
Contact us now to learn more about our high-performance ultrasonic homogenizers for milling and nano-dispersions!
La tabella seguente fornisce un'indicazione della capacità di lavorazione approssimativa dei nostri ultrasonori:
Volume di batch | Portata | Dispositivi raccomandati |
---|---|---|
1 - 500mL | 10 - 200mL/min | UP100H |
10 - 2000mL | 20 - 400mL/min | UP200Ht, UP400St |
0,1 - 20L | 0,2 - 4L/min | UIP2000hdT |
10 - 100L | 2 - 10L/min | UIP4000hdt |
Da 15 a 150L | Da 3 a 15L/min | UIP6000hdT |
n.a. | 10 - 100L/min | UIP16000 |
n.a. | più grande | cluster di UIP16000 |
Contattateci! / Chiedi a noi!
Letteratura / Riferimenti
- Turcheniuk, K., Trecazzi, C., Deeleepojananan, C., & Mochalin, V. N. (2016): Salt-Assisted Ultrasonic Deaggregation of Nanodiamond. ACS Applied Materials & Interfaces, 8(38), 2016. 25461–25468.
- Adam K. Budniak, Niall A. Killilea, Szymon J. Zelewski, Mykhailo Sytnyk, Yaron Kauffmann, Yaron Amouyal, Robert Kudrawiec, Wolfgang Heiss, Efrat Lifshitz (2020): Exfoliated CrPS4 with Promising Photoconductivity. Small Vol.16, Issue 1. January 9, 2020.
- Brad W. Zeiger; Kenneth S. Suslick (2011): Sonofragmentation of Molecular Crystals. J. Am. Chem. Soc. 2011, 133, 37, 14530–14533.
- Mondragón Cazorla R., Juliá Bolívar J. E.,Barba Juan A., Jarque Fonfría J. C. (2012): Characterization of silica–water nanofluids dispersed with an ultrasound probe: A study of their physical properties and stability. Powder Technology Vol. 224, 2012.