Technologie des ultrasons Hielscher

Extraction du tabac par ultrasons

L'extraction conventionnelle du tabac est un processus lent et long, qui implique l'utilisation de solvants toxiques à haute température, ce qui rend le processus dangereux.
L'extraction assistée par ultrasons des alcaloïdes du tabac peut être effectuée à l'aide d'eau ou de solvants doux en quelques minutes. Les alcaloïdes extraits par ultrasons, comme la nicotine du tabac, sont libérés rapidement et très efficacement, ce qui donne des rendements élevés d'un extrait à spectre complet (contenant de la nicotine, de la nornicotine, de l'acide chlorogénique (acide 5-caféoylquinique), de la rutine, de l'acide caféique et scopoletin, du solanesol etc.)

Extraction ultrasonique du tabac

L'extraction assistée par ultrasons (EAU) est une méthode d'extraction rapide, efficace et pratique, basée sur l'application des ultrasons de puissance. Les ondes ultrasonores intenses génèrent des micro-mouvements rapides et une cavitation acoustique dans les systèmes solide-liquide (par exemple, les matières végétales dans les solvants, par exemple, les feuilles de tabac dans l'éthanol), ce qui entraîne un transfert de masse accru ainsi qu'un processus d'extraction accéléré. En comparaison avec d'autres techniques d'extraction avancées telles que l'extraction par fluide supercritique et l'extraction par paires d'ions, l'extraction assistée par ultrasons est nettement plus économique, plus écologique, plus sûre et plus facile à utiliser. Par conséquent, l'extraction par ultrasons est la technique d'extraction préférée pour libérer les composés bioactifs des plantes médicinales.
L'extraction par ultrasons donne un extrait à large spectre, contenant de la nicotine, qui est l'alcaloïde primaire du tabac avec 94-98% de l'alcaloïde total, ainsi que les alcaloïdes nornicotine, anabasine, anatabine, cotinine et myosmine.

UP100H avec sonotrode MS14 pour l'extraction de plantes médicinales, comme le tabac.

La SonoStation de Hielscher Ultrasons est une installation ultrasonique facile à utiliser pour la production à l'échelle industrielle. (Cliquez pour agrandir !)

SonoStation – un système à ultrasons avec 2x Ultrasons 2kW, Cuve agitée et la pompe – est un système d'extraction convivial.

Demande d'information





Extraits de tabac à spectre complet avec sonication

Les alcaloïdes tels que la nicotine et la nornicotine, l'acide chlorogénique, les composés phénoliques, le solanesol et d'autres composés bioactifs peuvent être isolés rapidement, efficacement et sans danger par extraction ultrasonique. L'extraction conventionnelle du tabac implique l'utilisation de solvants toxiques tels que l'heptane à haute température, ce qui rend le processus d'extraction dangereux. L'ensemble du processus d'extraction conventionnel prend environ 24 heures et prend donc beaucoup de temps.
L'extraction par ultrasons peut se faire par extraction à l'eau froide ou à l'aide de solvants doux comme l'éthanol ou le mélange éthanol-eau à température ambiante ou à température légèrement élevée. La sonication prend quelques minutes, ce qui transforme l'extraction en une procédure rapide. De plus, l'utilisation d'eau ou de solvants doux est totalement sûre et pratique.
Les feuilles de tabac appauvries par ultrasons sont séparées des composés extraits dans le solvant. Les extraits à spectre complet produits par ultrasons contiennent de la nicotine alcaloïde primaire ainsi que des alcaloïdes secondaires ou mineurs comme l'anabasine ou la 3-(2-pipéridinyl)pyridine, l'anatabine ou la 3-(2-1,2,3,6-tétrahydropyridyl)pyridine, cotinine ou 1-méthyl-5-(3-pyridyl)-2-pyrrolidinone), 2,3'-dipyridyl ou isonicotéine, N-formylnornicotine ou 2-(3-pyridyl)pyrrolidinecarbaldéhyde, myosmine ou 3-(1-pyrrolin-2-yl)pyridine, nornicotine ou 3-(pyrrolidin-2-yl)pyridine 𝛽-nicotyrine or 3-(1-methylpyrrol-2-yl)pyridine. The content of these alkaloids varies depending on tobacco species and tobacco products. While nicotine is the primary alkaloid with 94–98% of the total alkaloid content, nornicotine and anatabine are the two most abundant secondary alkaloids, each accounting for approx. 2% to 6% of the total alkaloid content of tobacco.

Benefits of Ultrasonic Tobacco Extraction:

  • Higher Yield
  • High Quality
  • Rapid Extraction
  • Mild, Non-thermal Process
  • Water or Solvent
  • Simple & Safe Operation

Choose from a Broad Selection of Solvents

Using ultrasonic extraction, you can select from various solvents, including water, alcohol, ethanol, methanol, ethanol-water mixtures or strong solvents such as heptane or hexane. All of the former named solvents have been already successfully tested and shown to be effective for the isolation of bioactive compounds such as alkaloids, terpenoids, phenolics and solanesol from tobacco plant materials. Sonication can be used in solvent-free cold-water extraction (e.g. to prepare organic extracts) or can be combined with a solvent of your choice.
Learn more about solvents for the ultrasonic extraction from botanicals!

Hielscher ultrasonicator UP400St with sonotrode S24d22L2 for extraction of nicotine and harmala from tobacco leaves.

Ultrasonic processor UP400St (400 watts) for the extraction of alkaloids such as nicotine and harmala from tobacco leaves.

High-Performance Ultrasound Extractors

UIP4000hdT (4kW) ultrasonic processor for the extraction of pectins in an industrial inline process.Hielscher’s ultrasonic equipment is a commonly extraction tool for the isolation of bioactive compounds from botanicals. Supplying ultrasonic extractors for all process scales, Hielscher is able to recommend you the most suitable ultrasonic system for your needs. Starting with compact, yet powerful lab systems for analysis and feasibility testing, Hielscher offers the full range from lab and pilot plant ultrasonicators up to fully industrial ultrasound reactors. Offering the full band width of ultrasonic processors, Hielscher has the ideal setup for your extraction process. Depending on your process volume and goal, ultrasonic extraction can be performed in batch or continuous flow mode. Manifold accessories such as sonotrodes, booster horns, flow cells and reactors allow to equip the ultrasonic processor to fulfil the process targets ideally.
Hielscher’s ultrasonic processors can be precisely controlled and process data are automatically recorded on the integrated SD-card of our digital ultrasonic systems. The reliable control over the process parameters ensure a consistently high product quality. The automatic data recording of the process parameters allow for an easy process standardization and the fulfilment of Good Manufacturing Practices (GMP).
The robustness of Hielscher’s ultrasonic equipment allows for 24/7 operation at heavy duty and in demanding environments. Easy and safe operation as well as low maintenance make Hielscher’s ultrasonic systems the reliable work horse in your production.

The table below gives you an indication of the approximate processing capacity of our ultrasonicators:

Batch Volume Flow Rate Recommended Devices
0.5 to 1.5mL n.a. VialTweeter
1 to 500mL 10 to 200mL/min UP100H
10 to 2000mL 20 to 400mL/min UP200Ht, UP400St
0.1 to 20L 0.2 to 4L/min UIP2000hdT
10 to 100L 2 to 10L/min UIP4000
n.a. 10 to 100L/min UIP16000
n.a. larger cluster of UIP16000

Contact us now for further information! Our well-trained staff will be glad to discuss your extraction process with you!

Contact Us! / Ask Us!

Ask for more information

Please use the form below, if you wish to request additional information about ultrasonic homogenization. We will be glad to offer you an ultrasonic system meeting your requirements.









Please note our privacy policy.


Hielscher Ultrasonics manufactures high-performance ultrasonicators for sonochemical applications.

High-power ultrasonic processors from lab to pilot and industrial scale.



Facts Worth Knowing

Why is Ultrasonic Extraction so Effective?

Ultrasonically-assisted extraction (UAE) is based on coupling highly intense ultrasound waves (acoustic waves) into a liquid or slurry. The acoustic waves create alternating high pressure / low pressure cycles, which result in the phenomenon of acoustic cavitation. The phenomenon of ultrasonic or acoustic cavitation is characterized by extreme, locally confined conditions of very high pressures, temperatures and shear forces. In proximity of the imploding cavitation bubbles, temperatures of up to 5000K, pressures of 1000 atmosphere, heating-cooling rate above 1010 K/s and liquids jets with up to 280m/s velocity, which appear as very high shear force and turbulences in the cavitational zone, can be measured. The combination of these factors (pressure, heat, shear and turbulence) disrupt cells (lysis) and intensify mass transfer during the extraction process. Thereby, the liquid-solid extraction of phytoconstituents from plant cells is promoted. The ultrasonic extraction technique is widely applied for the successful and efficient extraction of flavonoids, polysaccharides, alkaloids, phytosterols, polyphenols, and pigments from plants.

Ultrasonic disruptors are used for extractions from phyto sources (e.g. plants, algae, fungi)

Ultrasonic extraction from plant cells: the microscopic transverse section (TS) shows the mechanism of actions during ultrasonic extraction from cells (magnification 2000x) [resource: Vilkhu et al. 2011]

Tobacco

Various plants in the Nicotiana genus and the Solanaceae (nightshade) family are known as tobacco plants. Besides being the commonly used term for the plant, tobacco describes also the products prepared from the cured leaves of the tobacco plant. Whilst Nicotiana tabacum is the main crop use for tobacco and nicotine production, there are over 70 plant species of tobacco. N. tabacum is the dominant species used for tobacco products, however the more potent variant N. rustica can be found around the world and is used for.
Tobacco contains the stimulant alkaloid nicotine as well as harmala alkaloids. Dried and cured tobacco leaves are mainly used for smoking in cigarettes, cigars, pipes, shishas as well as e-cigarettes, e-cigars, e-pipes and vaporizers. Alternatively, they can be consumed as snuff, chewing tobacco, dipping tobacco and snus.

The tobacco plant family contains various (sub-)species, which exhibit different alkaloid and flavour profiles.
Oriental tobacco (Nicotiana tabacum L.) is a species of tobacco grown mainly in Turkey, Greece, and neighboring areas, which is used for the commercial production of cigarettes, cigars and chewing tobacco. It has a strong characteristic flavor, is relatively low in nicotine and high in reducing sugars, acids, and volatile flavor oil, which gives the tobacco products an intense aroma.

There are 67 natural species of tobacco known. Below the most common species are listed:

  • Nicotiana acuminata (Graham) Hook. – manyflower tobacco
  • Nicotiana africana Merxm.
  • Nicotiana alata Link & Otto – winged tobacco, jasmine tobacco, tanbaku (Persian)
  • Nicotiana attenuata Torrey ex S. Watson – coyote tobacco
  • Nicotiana benthamiana Domin
  • Nicotiana clevelandii A. Gray
  • Nicotiana glauca Graham – tree tobacco, Brazilian tree tobacco, shrub tobacco, mustard tree
  • Nicotiana glutinosa L.
  • Nicotiana langsdorffii Weinm.
  • Nicotiana longiflora Cav.
  • Nicotiana occidentalis H.-M. Wheeler
  • Nicotiana obtusifolia M. Martens & Galeotti – desert tobacco, punche, “tabaquillo”
  • Nicotiana otophora Griseb.
  • Nicotiana plumbaginifolia Viv.
  • Nicotiana quadrivalvis Pursh
  • Nicotiana rustica L. – Aztec tobacco, mapacho
  • Nicotiana suaveolens Lehm. – Australian tobacco
  • Nicotiana sylvestris Speg. & Comes – South American tobacco, woodland tobacco
  • Nicotiana tabacum L. – commercial tobacco grown for the production of cigarettes, cigars, chewing tobacco, etc.
  • Nicotiana tomentosiformis Goodsp.

The three species below are man-made hybrids:

  • Nicotiana × didepta N. debneyi × N. tabacum
  • Nicotiana × digluta N. glutinosa × N. tabacum
  • Nicotiana × sanderae Hort. ex Wats. N. alata × N. forgetiana

Types of Tobacco
The curing and subsequent aging process of tobacco leaves induces a slow oxidation and degradation of the present carotenoids in tobacco leaf. Due to the oxidation, certain compounds in the tobacco leaves are synthesized, which result in sweet hay, tea, rose oil, or fruity aromatic flavors, which contribute to the “smoothness” of the smoke. Starches are converted into sugars, which subsequently glycate proteins, and are oxidized into advanced glycation endproducts (AGEs). This is a caramelization process that also gives the smoke its flavor.
The preparation and curing method of tobacco influences its final aroma characteristics. Curing can be achieved by air-, fire-, flue-, and sun-curing. For example, flue-cured tobacco (e.g. from France) contains only low levels of alkaloids, whilst air-cured Burley tobacco (e.g. sourced from Guatemala) is known for its high content of alkaloids.