Nano-Gréisst Magnesiumhydrid als effizient Waasserstofflagerung
Sonication is applied to magnesium hydride in order to accelerate the hydrolysis of magnesium hydride to enhance hydrogen generation. Additionally, ultrasonically nanostructured magnesium hydride, i.e. MgH2 nanoparticles, show improved hydrogen storage capacity.
Magnesiumhydrid fir Waasserstoffspäicherung
Magnesiumhydrid, MgH2, has drawn widely attention as option for hydrogen storage. Main benefits are its abundant resource, high performance, light weight, low-cost, and safety. In comparison to other hydrides usable for hydrogen storage, MgH2 has the highest hydrogen storage densities with up to 7.6 wt %. Hydrogen can be stored in Mg in the form of Mg-based metal hydrides. The process of MgH2 synthesis is known as dissociative chemisorption. A common method to produce Mg-based metal hydride from Mg and H2, is the formation at a temperature of 300–400°C and a hydrogen pressure of 2.4–40 MPa. The formation equation goes as following: Mg + H2 ⇌ MgH2
The high heat treatment comes with significant degradation effects of the hydrides, such as recrystallization, phase segregation, nanoparticles agglomeration etc. Furthermore, high temperatures and pressures make the formation of MgH2 energy-intensive, complex and thereby expensive.
Ultraschall Hydrolyse vu Magnesium Hydrid
Hiroi et al. (2011) demonstrated that sonication of MgH2 nano-particles and nanofibres intensified the hydrolysis reaction MgH2 + 2H2O = Mg(OH)2 + 2H2 + 277 kJ. In this study, the MgH2 nanofibers exhibited the maximum hydrogen storage capacity of 14.4 mass% at room temperature. Additionally, the researchers demonstrated that a combination of sonication and MgH2 hydrolysis is considerably effective for efficiently generating hydrogen without heating and adding any chemical agent. They also found that low frequency ultrasound was the most efficient method in order to obtain a high conversion rate. The hydrolysis rate at low frequency sonication “reached as high as 76% in terms of the reaction degree at 7.2 ks at an ultrasonic frequency of 28 kHz. This value was more than 15 times the value obtained in the case of the non-sonicated sample, indicating an equivalent hydrogen density of 11.6 mass% on the basis of the weight of MgH2.”
D'Resultater hunn erginn datt Ultraschall d'Hydrolyse Reaktioun vu MgH2 verbessert andeems d'Reaktiounsrate konstant erhéicht gëtt wéinst der Generatioun vu Radikaler an der passiver Schicht vu Mg (OH) 2 exfoliéiert iwwer den net reagéierte MgH2 wéinst der Generatioun vu grousse Schéierkräften. (Hiroi et al. 2011)
Problem: Lues Hydrolyse vu Magnesiumhydrid
Promotion of magnesium hydride hydrolysis via ball milling, hot water treatment or chemical additives have been investigated, but were not found to enhance the chemical conversion rate in a significant manner. Regarding the addition of chemicals, chemical additives, such as buffering agents, chelators, and ion exchangers, which helped to prevent the formation of a passivating Mg(OH)2 layer, produced impurities in the post-Mg cycling process.
Léisung: Ultraschallverdeelung vu Magnesiumhydrid
Ultraschall Dispergéieren an Naassfräsen ass eng héich effizient Technik fir Nano-Gréisst Partikelen a Kristalle mat enger ganz enker Verdeelungskurve ze produzéieren. Duerch d'Verbreedung vu Magnesiumhydrid gläichméisseg an der Nano-Gréisst gëtt déi aktiv Uewerfläch däitlech vergréissert. Ausserdeem, Sonikatioun läscht passivéierend Schichten a erhéicht Massentransfer fir super chemesch Konversiounsraten. Ultraschallfräsen, Dispergéieren, Desagglomeratioun a Partikeloberflächenreinigung exceléieren aner Fräistechniken an Effizienz, Zouverlässegkeet an Einfachheet.

Sonicator UIP1000hdT fir déi kontinuéierlech Inline Veraarbechtung vu Magnesiumhydrid

Ultraschall Naassfräsen an Dispergéieren ass eng héich effizient Method fir d'Partikelgréisst Reduktioun, zB vu Magnesiumhydrid
Nanostructured Magnesium Hydride as Improved Hydrogen Storage
Nano-structuring magnesium hydrides has been scientifically proven to be an effective strategy which allows to simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH2. Nano-sized / nano-structured magnesium-based structures such as MgH2 nanoparticles and nanofibres can be further enhanced by reducing the particle and grain size, thereby decreasing their hydride formation enthalpy ΔH. Calculations revealed reaction barrier for the decomposition of nano-sized MgH2 was remarkably lower than that of bulk MgH2, indicating that nanostructure engineering of MgH2 is thermodynamically and kinetically favourable to the enhanced performance. (cf. Ren et al., 2023)

Comparison of the energy barriers for the hydrogen absorption and desorption of bulk MgH2 and nanostructured ultrafine MgH2.
(study and graph: ©Zhang et al., 2020)
Ultrasonic Nanosizing and Nanostructuring of Magnesium Hydride
Ultrasonic nanostructuring is a highly effective technique that allows to change the thermodynamics of magnesium hydride without affecting the hydrogen capacity. The ultra-fine MgH2 nanoparticles exhibit a significantly improved hydrogen desorption capacity. Nano-sizing magnesium hydride is a way to significantly reduce the hydrogen ab-/de-sorption temperature and increase the rate of re/de-hydrogenation of MgH2, due to the introduction of defects, shortening of hydrogen diffusion paths, increasing of nucleation sites, and destabilization of Mg–H bonding.
A simple sonochemical treatment provides the possibility of low-energy hydrides formation, particularly, in the case of magnesium particles treatment. For instance, Baidukova et al. (2026) demonstrated the possibility to form low-energy hydrides in a porous magnesium-magnesium hydroxide matrix by means of the sonochemical treatment of magnesium particles in aqueous suspensions.
Sonochemically Synthesized Nano-Magnesium Hydride for Efficient Hydrogen Storage
Ultrasonically prepared magnesium hydride nanoparticles achieve ambient-temperature reversibility of 6.7 wt% reversible storage of hydrogen
Using light metal hydrides as carriers for hydrogen storage is a promising approach for safe and efficient storage of hydrogen. One particular metal hydride, magnesium hydride (MgH2), has gained significant interest due to its high hydrogen content and the abundance of magnesium in nature. However, bulk MgH2 has the disadvantage of being stable, only releasing hydrogen at very high temperatures of more than 300°C. This is impractical and inefficient for hydrogen-storage related applications.
Zhang et al. (2020) investigated the possibility of reversible hydrogen storage at ambient temperature by creating ultrafine nanoparticles of MgH2. They used sonication in order to initiate a metathesis process, which is effectively a double decomposition process. Sonication was applied to a slurry consisting in liquid and solids with the purpose to create nanoparticles. These nanoparticles, without any additional scaffold structures, were successfully produced with sizes predominantly around 4-5 nm. For these nanoparticles, the y measured a reversible hydrogen storage capacity of 6.7 wt% at 30°C , a significant achievement that has not been demonstrated before. This was made possible by thermodynamic destabilization and reduced kinetic barriers. The bare nanoparticles also exhibited stable and rapid hydrogen cycling behavior during 50 cycles at 150°C, a notable improvement compared to bulk MgH2. These findings presents sonication as potential treatment leading to higher efficiency of MgH2 for hydrogen storage.
(cf. Zhang et al. 2020)

Particle size distribution ultrafine MgH2 prepared after sonication.
(study and graph: ©Zhang et al., 2020)
- Schneller Reaktioun
- Méi héich Konversiounsquote
- Nanostrukturéiert MgH2
- Entfernung vu passivéierende Schichten
- Méi komplett Reaktioun
- masseg Transfertransfer
- Méi héich Ausbezuelen
- Verbesserte Waasserstoffsorption
High-Performance Ultrasonicators for Magnesium Hydride Treatment
Sonochemie – d'Applikatioun vu Kraaft Ultraschall op chemesch Reaktiounen – ass eng zouverlässeg Veraarbechtungstechnologie, déi Synthesen, katalytesch Reaktiounen an aner hetergen Reaktiounen erliichtert a beschleunegt. Hielscher Ultrasonics Portfolio deckt déi ganz Palette vu kompakten Labo Ultraschaller bis industriell sonochemesch Systemer fir all Zort vu chemeschen Uwendungen wéi d'Hydrolyse vu Magnesiumhydrid a seng Nano-Fräsen / Nano-Strukturéierung. Dëst erlaabt eis bei Hielscher Iech de gëeegentste Ultraschall fir Äre virgesi MgH2 Prozess ze bidden. Eis laangjäreg erfuerene Mataarbechter hëllefen Iech vu Machbarkeetstester a Prozessoptimiséierung bis zur Installatioun vun Ärem Ultraschallsystem op endgülteg Produktiounsniveau.
De klenge Foussofdrock vun eisen Ultraschall Homogeniséierer wéi och hir Vielfältigkeit bei Installatiounsoptioune maachen datt se och a klenge Raumveraarbechtungsanlagen passen. Ultraschallveraarbechter gi weltwäit a Feinchemie, Petrochemie an Nano-Material Produktiounsanlagen installéiert.
Charge an Inline
Hielscher sonochemical equipmment can be used for batch and continuous flow-through processing. Ultrasonic batch processing is ideal for process testing, optimisation and small to mid-size production level. For a producing large volumes of materials, inline processing might be more advantageous. A continuous inline mixing process requires a sophisticated setup – bestehend an enger Pompel, Schlauchen oder Päifen a Panzer -, awer et ass héich effizient, séier a brauch wesentlech manner Aarbecht. Hielscher Ultrasonics huet dee passendste sonochemesche Setup fir Är Sono-Synthese Reaktioun, Veraarbechtungsvolumen an Ziler.
Ultraschall Sonden a Reaktoren fir MgH2 Hydrolyse a jidder Skala
Hielscher Ultrasonics Produktpalette deckt de ganze Spektrum vun Ultraschallveraarbechter vu kompakte Labo Ultraschaller iwwer Bank-Top a Pilotsystemer bis vollindustriell Ultraschallveraarbechter mat der Kapazitéit fir Truckloads pro Stonn ze verschaffen. Déi ganz Produktpalette erlaabt eis Iech de passendsten Ultraschall Homogeniséierer fir Är Prozesskapazitéit a Produktiounsziler ze bidden.
Ultraschall Benchtop Systemer sinn ideal fir Machbarkeet Testen a Prozess Optimiséierung. Linear Skala-up baséiert op etabléierte Prozessparameter mécht et ganz einfach d'Veraarbechtungskapazitéite vu méi klenge Partien op ganz kommerziell Produktioun ze erhéijen. Up-Scaling kann gemaach ginn entweder duerch eng méi mächteg Ultraschall-Eenheet installéieren oder e puer Ultraschaller parallel clusteren. Mat der UIP16000 bitt Hielscher de mächtegsten Ultraschall Homogeniséierer weltwäit.
Genau kontrolléierbar Amplituden fir optimal Resultater
All Hielscher Ultraschaller si präzis kontrolléierbar an doduerch zuverlässeg Aarbechtspäerd an der Produktioun. D'Amplitude ass eng vun den entscheedende Prozessparameteren déi d'Effizienz an d'Effektivitéit vu sonochemesche Reaktiounen beaflossen All Hielscher Ultrasonics processors allow for the precise setting of the amplitude. Sonotrodes and booster horns are accessories that allow to modify the amplitude in an even wider range. Hielscher industrial ultrasonic processors can deliver very high amplitudes and deliver the required ultrasonic intensity for demanding applications. Amplitudes of up to 200µm can be easily continuously run in 24/7 operation.
Präzis Amplitude-Astellungen an d'permanent Iwwerwaachung vun den Ultraschallprozessparameter via Smart Software ginn Iech d'Méiglechkeet Är Reaganz mat den effektivsten Ultraschallbedingungen ze behandelen. Optimal Opléisung fir eng aussergewéinlech chemesch Konversiounsquote!
The robustness of Hielscher ultrasonic equipment allows for 24/7 operation at heavy duty and in demanding environments. This makes Hielscher’s ultrasonic equipment a reliable work tool that fulfils your chemical process requirements.
Héchst Qualitéit – Designt an hiergestallt an Däitschland
As a family-owned and family-run business, Hielscher prioritizes highest quality standards for its ultrasonic processors. All ultrasonicators are designed, manufactured and thoroughly tested in our headquarter in Teltow near Berlin, Germany. Robustness and reliability of Hielscher ultrasonic equipment make it a work horse in your production. 24/7 operation under full load and in demanding environments is a natural characteristic of Hielscher’s high-performance mixers.
Hielscher Ultrasonics industriell Ultrasonic Prozessoren kënne ganz héich Amplituden liwweren. Amplituden vu bis zu 200µm kënne ganz einfach kontinuéierlech a 24/7 Operatioun lafen. Fir nach méi héich Amplituden sinn personaliséiert Ultraschall Sonotroden verfügbar.
D'Tabellner ënnert Iech en Indikatioun vun der ongeféieren Veraarbechtkapazitéit vun eisem Ultraschall:
Konte gefouert QShortcut | Duerchflossrate | recommandéiert Comments |
---|---|---|
1 bis 500mL | 10 bis 200mL / min | UP100H |
10 bis 2000mL | 20 bis 400mL / min | UP200Ht, An UP400St |
0.1 bis 20L | 0.2 bis 4L / min | UIP2000hdT |
10 bis 100L | 2 bis 10L / min | UIP4000hdT |
15 bis 150 l | 3 bis 15 l/min | UIP6000hdT |
na | 10 bis 100L / min | UIP16000 |
na | méi grouss | Stärekoup vun UIP16000 |
Kontaktéiert eis! / Frot eis!
Literatur / Referenzen
- Zhang, Xin; Liu, Yongfeng; Zhuanghe, Ren; Zhang, Xuelian ; Hu, Jianjiang; Huang, Zhenguo; Lu, Y.H.; Gao, Mingxia; Pan, Hongge (2020): Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydride. Energy & Environmental Science 2020.
- Skorb, Katja; Baidukova, Olga; Moehwald, Helmuth; Mazheika, Aliaksei; Sviridov, Dmitry; Palamarciuc, Tatiana; Weber, Birgit; Cherepanov, Pavel; Andreeva, Daria (2015): Sonogenerated Metal-Hydrogen Sponges for Reactive Hard Templating. Chemical Communications 51(36), 2016.
- Olga Baidukova, Ekaterina V. Skorb (2016): Ultrasound-assisted synthesis of magnesium hydroxide nanoparticles from magnesium. Ultrasonics Sonochemistry, Volume 31, 2016. 423-428.
- Nadzeya Brezhneva, Nikolai V. Dezhkunov, Sviatlana A. Ulasevich, Ekaterina V. Skorb (2021): Characterization of transient cavitation activity during sonochemical modification of magnesium particles. Ultrasonics Sonochemistry, Volume 70, 2021.
- Shun Hiroi, Sou Hosokai, Tomohiro Akiyama (2011): Ultrasonic irradiation on hydrolysis of magnesium hydride to enhance hydrogen generation. International Journal of Hydrogen Energy, Volume 36, Issue 2, 2011. 1442-1447.
- Ren L, Li Y, Zhang N, Li Z, Lin X, Zhu W, Lu C, Ding W, Zou J. (2023): Nanostructuring of Mg-Based Hydrogen Storage Materials: Recent Advances for Promoting Key Applications. Nano-Micro Letters 15, 93; 2023.
- Brad W. Zeiger; Kenneth S. Suslick (2011): Sonofragmentation of Molecular Crystals. J. Am. Chem. Soc. 2011, 133, 37, 14530–14533.
Fakten Wësse wat weess
Virdeeler vu Magnensium Hydrid fir Waasserstoffspäicher
- Ideal, equilibréiert gravimetresch
- Superior volumetric energy density
- net deier
- Abundantly available
- Easy to handle (even in air)
- Direct reaction with water is possible
- Reaktiounskinetik ka fir spezifesch Uwendungen ugepasst ginn
- Héich Reaktioun a Produktsécherheet
- Non-toxic and safe-to-use
- emweltfrëndlech
Wat ass Magnesium Hydrid?
Magnesiumhydrid (MgH2; och bekannt als Magnesiumdihydrid) huet eng tetragonal Struktur a weist d'Form vun engem faarflose kubesche Kristall oder off-white Pudder aus. Et gëtt als hdyrogen Quell fir Brennbatterien ënner 10.000W benotzt. De Waasserstoffmengen deen duerch Waasser verëffentlecht gëtt ass méi héich wéi 14.8wt%, dat ass däitlech méi héich wéi de Waasserstoffmengen iwwer en Héichdrockgas Waasserstoffspäichertank (70MPa, ~ 5.5wt%) a Schwéiermetall Waasserstoff Späichermaterial (<2wt%). Furthermore, magnesium hydride is safe and highly efficient, which turns it into a promising technology for efficacious hydrogen storage. Hydrolysis of magnesium hydride is used as supply hydrogen system in proton-exchange membrane fuel cells (PEMFC), which improve energy density of the system significantly. Solid / semi-solid Mg-H fuel battery systems with high-energy density are also in development. Their promising advantage is an energy density 3-5 times higher than that of lithium-ion batteries.
Synonyms: Magnesium dihydride, magnesium hydride (hydrogen storage grade)
Used as material for hydrogen storage
Molecular Formula: MgH2
Molecular Weight:26.32 Density:1.45g/mL
Melting Point:>250 ℃
Solubilitéit: onléisbar an normaler organescher Léisung

Héich performant Ultraschall! D'Hielscher Produktpalette befaasst de ganze Spektrum vum kompakten Labo Ultraschall iwwer Bench-Top Eenheeten bis voll industriell Ultraschallsystemer.