Tổng hợp Hydrogel Nanocomposite bằng cách sử dụng Ultrasonication
Hydrogel nanocomposite hoặc nanogel là các cấu trúc 3D đa chức năng với hiệu quả cao như chất mang thuốc và hệ thống phân phối thuốc giải phóng có kiểm soát. Ultrasonication thúc đẩy sự phân tán của kích thước nano, các hạt hydrogel polymer cũng như sự bao gồm / kết hợp tiếp theo của các hạt nano vào các cấu trúc polymer này.
Ultrasonic Synthesis of Nanogels
Nanocomposite hydrogels are three-dimensional material structures and can be designed to exhibit specific features, which makes them potent drug carriers and controlled-release drug delivery systems. Ultrasonication promotes the synthesis of functionalized nano-sized particles as well as the subsequent inclusion/incorporation of nanoparticles in three-dimensional polymeric structures. As ultrasonically synthesized nanogels can entrap bioactive compounds inside their nanoscale core, these nano-sized hydrogels offer great functionalities.
Nanogels are aqueous dispersion of hydrogel nanoparticles, which are physically or chemically cross-linked as hydrophilic polymer network. As high-performance ultrasound is highly efficient in producing nano-dispersions, probe-type ultrasonicators are a crucial tool for the fast and reliable production of nanogels with superior functionalities.
Functionalities of Ultrasonically Produced Nanogels
- excellent colloidal stability and the large specific surface area
- can be densely packed with nanoparticles
- allow to combine hard and soft particles in hybrid core/shell nanogel
- high hydration potential
- promoting bioavailability
- high swelling / de-swelling properties
Ultrasonically synthesized nanogels are used in numerous applications and industries, e.g.
- for pharmaceutical and medical applications: e.g. drug carrier, antibacterial gel, antibacterial wound dressing
- in biochemistry and biomedicine for gene delivery
- as adsorbent/biosorbent in chemical and environmental applications
- in tissue engineering as hydrogels can mimic the physical, chemical, electrical, and biological properties of many native tissue
Case Study: Zinc Nanogel Synthesis via Sonochemical Route
ZnO hybrid nanoparticles can be stabilized in a Carbopol gel via a facile ultrasonic process: Sonication is used to drive the precipitation of zinc nanoparticles, which are subsequently ultrasonically crosslinked with Carbopol to form a nano-hydrogel.
Ismail et al. (2021) precipitated zinc oxide nanoparticles via a facile sonochemical route. (Find the protocol for the sonochemical synthesis of ZnO nanoparticles here).
Sau đó, các hạt nano được sử dụng để tổng hợp gel nano ZnO. Do đó, các NP ZnO được sản xuất đã được rửa sạch bằng nước khử ion kép. 0,5 g Carbopol 940 đã được hòa tan trong 300 ml nước khử ion gấp đôi, tiếp theo là bổ sung các NP ZnO mới rửa. Vì Carbopol có tính axit tự nhiên, dung dịch đòi hỏi phải trung hòa giá trị pH, nếu không nó sẽ không đặc lại. Do đó, hỗn hợp đã trải qua quá trình sonication liên tục bằng cách sử dụng máy siêu âm Hielscher UP400S với biên độ 95 và chu kỳ 95% trong 1 giờ. Sau đó, 50 ml trimethylamine (TEA) làm chất trung hòa (tăng pH lên 7) đã được thêm vào từng giọt dưới sonication liên tục cho đến khi sự hình thành gel trắng ZnO xảy ra. Sự dày lên của Carbopol bắt đầu khi độ pH gần với pH trung tính .
The research team explains the extraordinarily positive effects of ultrasonication on nanogel formation by enhanced particle-particle interaction. Ultrasonically initiated molecular agitation of the constituents in the reaction mixture enhances the thickening process promoted by the polymer-solvent interactions. Additionally, sonication promotes the dissolving of Carbopol. In addition, ultrasound wave irradiation enhances the polymer–ZnO NPs interaction and improves the viscoelastic properties of the prepared Carbopol/ZnO hybrid nanoparticles gel.
The schematic flowchart above shows the synthesis of ZnO NPs and Carbopol/ZnO hybrid nanoparticle gel. In the study, the ultrasonicator UP400St was used for ZnO nanoparticle precipitation and nanogel formation. (adapted from Ismail et al., 2021)
Case Stuy: Ultrasonic Preparation of Poly(methacrylic acid)/Montmorillonite (PMA/nMMT) Nanogel
Khan et al. (2020) demonstrated the successful synthesis of a poly(methacrylic acid)/Montmorillonite (PMA/nMMT) nanocomposite hydrogel via ultrasound-assisted redox polymerization. Typically, 1.0 g of nMMT was dispersed in 50 mL of distilled water with ultrasonication for 2 h to form a homogeneous dispersion. Sonication improves the dispersion of clay, resulting in enhanced mechanical properties and adsorption capacity of the hydrogels. Methacrylic acid monomer (30 mL) was added dropwise to the suspension. Initiator ammonium persulfate (APS) (0.1 M) was added to the mixture followed by 1.0 mL of TEMED accelerator. The dispersion was vigorously stirred for 4 h at 50°C by a magnetic stirrer. The resulting viscous mass was acetone-washed and desiccated for 48 h at 70°C in an oven. The resulting product was ground and stored in a glass bottle. Different nanocomposite gels were synthesized by varying the nMMT in quantities of 0.5, 1.0, 1.5, and 2.0 g. The nanocomposite hydrogels prepared using 1.0 g of nMMT depicted better adsorption results than the rest of composites and was therefore used for further adsorption investigation.
The SEM-EDX micrographs on the right show the elemental and structural analysis of the nanogels consisting in montmorillonite (MMT), nano-montmorillonite (nMMT), poly(methacrylic acid)/nano-montmorillonite (PMA/nMMT), and amoxicillin (AMX)- and diclofenac (DF)-loaded PMA/nMMT. The SEM micrographs recorded at a magnification of 1.00 KX along with the EDX of
- montmorillonite (MMT),
- nano-montmorillonite (nMMT),
- poly(methacrylic acid)/nano-montmorillonite (PMA/nMMT),
- and amoxicillin (AMX)- and diclofenac (DF)-loaded PMA/nMMT.
Người ta quan sát thấy rằng MMT thô nợ một cấu trúc tấm phân lớp cho thấy sự hiện diện của các hạt lớn hơn. Sau khi sửa đổi, các tấm MMT được tẩy tế bào chết thành các hạt nhỏ, có thể là do loại bỏ Si2 + và Al3 + khỏi các vị trí bát diện. Phổ EDX của nMMT thể hiện tỷ lệ carbon cao, chủ yếu có thể là do chất hoạt động bề mặt được sử dụng để sửa đổi vì thành phần chính của CTAB (C19H42BrN) là carbon (84%). PMA / nMMT hiển thị một cấu trúc mạch lạc và gần như đồng liên tục. Hơn nữa, không nhìn thấy lỗ chân lông, mô tả sự tẩy da chết hoàn toàn của nMMT vào ma trận PMA. Sau khi hấp thu với các phân tử dược phẩm amoxicillin (AMX) và diclofenac (DF), những thay đổi trong hình thái PMA / nMMT được quan sát thấy. Bề mặt trở nên không đối xứng với sự gia tăng kết cấu thô.
Use and functionalities of clay-based nano-sized hydrogels: Clay-based hydrogel nanocomposites are envisioned to be potential super adsorbents for the uptake of inorganic and/or organic contaminants from an aqueous solution due to the combining characteristics of both clays and polymers, such as biodegradability, biocompatibility, economic viability, abundance, high specific surface area, three-dimensional network, and swelling / de-swelling properties.
(cf. Khan et al., 2020)
High Performance Ultrasonicators for Hydrogel and Nanogel Production
High Performance Ultrasonicators for Hydrogel and Nanogel Production
Hielscher Ultrasonics manufactures high-performance ultrasonic equipment for the synthesis of hydrogels and nanogels with superior functionalities. From small and mid-size R&D and pilot ultrasonicators to industrial systems for commercial hydrogel manufacturing in continuous mode, Hielscher Ultrasonics has the right ultrasonic processor to cover your requirements for hydrogel / nanogel production.
- Hiệu quả cao
- Công nghệ tiên tiến
- Độ tin cậy & Mạnh mẽ
- mẻ & Inline
- cho bất kỳ khối lượng nào
- Phần mềm thông minh
- Các tính năng thông minh (ví dụ: giao thức dữ liệu)
- Dễ dàng và an toàn để vận hành
- bảo trì thấp
- CIP (sạch tại chỗ)
Bảng dưới đây cung cấp cho bạn một dấu hiệu về khả năng xử lý gần đúng của ultrasonicators của chúng tôi:
Khối lượng hàng loạt | Tốc độ dòng chảy | Thiết bị được đề xuất |
---|---|---|
1 đến 500mL | 10 đến 200ml / phút | UP100H |
10 đến 2000mL | 20 đến 400ml / phút | UP200Ht, UP400ST |
0.1 đến 20L | 0.2 đến 4L / phút | UIP2000hdT |
10 đến 100L | 2 đến 10L / phút | UIP4000hdt |
15 đến 150L | 3 đến 15L / phút | UIP6000hdT |
N.A. | 10 đến 100L / phút | UIP16000 |
N.A. | Lớn | Cụm UIP16000 |
Liên hệ với chúng tôi! / Hãy hỏi chúng tôi!
Văn học / Tài liệu tham khảo
- Ismail, S.H.; Hamdy, A.; Ismail, T.A.; Mahboub, H.H.; Mahmoud, W.H.; Daoush, W.M. (2021): Synthesis and Characterization of Antibacterial Carbopol/ZnO Hybrid Nanoparticles Gel. Crystals 2021, 11, 1092.
- Khan, Suhail; Fuzail Siddiqui, Mohammad; Khan, Tabrez Alam (2020): Synthesis of poly(methacrylic acid)/montmorillonite hydrogel nanocomposite for efficient adsorption of Amoxicillin and Diclofenac from aqueous environment: Kinetic, isotherm, reusability, and thermodynamic investigations. ACS Omega. 5, 2020. 2843–2855.
- Rutgeerts, Laurens A. J.; Soultan, Al Halifa; Subramani, Ramesh; Toprakhisar, Burak; Ramon, Herman; Paderes, Monissa C.; De Borggraeve, Wim M.; Patterson, Jennifer (2019): Robust scalable synthesis of a bis-urea derivative forming thixotropic and cytocompatible supramolecular hydrogels. Chemical Communications Issue 51, 2019.
Sự thật đáng biết
Protocol for Sonochemical Synthesis of ZnO Nanoparticles
NP ZnO được tổng hợp bằng phương pháp kết tủa hóa học dưới tác dụng chiếu xạ siêu âm. Trong một quy trình điển hình, kẽm axetat dihydrat (Zn (CH3COO) 2 · 2H2O) làm tiền chất và dung dịch amoniac 30-33% (NH3) trong dung dịch nước (NH4OH) làm chất khử, đã được sử dụng. Các hạt nano ZnO được tạo ra bằng cách hòa tan lượng kẽm axetat thích hợp trong 100 mL nước khử ion để tạo ra 0,1 M dung dịch ion kẽm. Sau đó, dung dịch ion kẽm đã được chiếu xạ sóng siêu âm bằng Hielscher UP400S (400 W, 24 kHz, Berlin, Đức) với biên độ 79% và chu kỳ 0,76 trong 5 phút ở nhiệt độ 40 ◦C. Sau đó, dung dịch amoniac được thêm từng giọt vào dung dịch ion kẽm dưới tác dụng của sóng siêu âm. Sau một lúc, các NP ZnO bắt đầu kết tủa và phát triển, và dung dịch amoniac liên tục được thêm vào cho đến khi xảy ra sự kết tủa hoàn toàn của NP ZnO.
The obtained ZnO NPs were washed using deionized water several times and were left out to settle down. Posteriorly, the obtained precipitate was dried at room temperature.
(Ismail et al., 2021)
What are Nanogels?
Nanogels or nanocomposite hydrogels are a type of hydrogel that incorporates nanoparticles, usually in the range of 1-100 nanometers, into their structure. These nanoparticles can be organic, inorganic, or a combination of both.
Nanogels are formed through a process known as crosslinking, which involves the chemical bonding of polymer chains to form a three-dimensional network. Since the formation of hydrogels and nanogels requires thorough mixing in order to hydrate the polymeric structure, to promote the crosslinking and to incorporate the nanoparticles, ultrasonication is a highly efficacious technique for the production of hydrogels and nanogels. Hydrogel and nanogel networks are capable of absorbing large amounts of water, making nanogels highly hydrated and thus suitable for a wide range of applications such as drug delivery, tissue engineering, and biosensors.
Nanogel hydrogels are typically composed of nanoparticles, such as silica or polymer particles, that are dispersed throughout the hydrogel matrix. These nanoparticles can be synthesized through various methods, including emulsion polymerization, inverse emulsion polymerization, and sol-gel synthesis. These polymerization and sol-gel syntheses benefit greatly from ultrasonic agitation.
Nanocomposite hydrogels, on the other hand, are composed of a combination of a hydrogel and a nanofiller, such as clay or graphene oxide. The addition of the nanofiller can improve the mechanical and physical properties of the hydrogel, such as its stiffness, tensile strength, and toughness. Here, the powerful dispersion capacities of sonication facilitate the uniform and stable distribution of nanoparticles into the hydrogel matrix.
Overall, nanogel and nanocomposite hydrogels have a wide range of potential applications in fields such as biomedicine, environmental remediation, and energy storage due to their unique properties and functionalities.
Applications of Nanogel for Medical Treatments
Type of Nanogel | thuốc | Disease | Activity | References |
PAMA-DMMA nanogels | Doxorubicin | Cancer | Increase in the release rate as the pH value decreased. Higher cytotoxicity at pH 6.8 in cell-viability studies | Du et al. (2010) |
Chitosan-based nanogels decorated with hyaluronate | Photosensitizers like tetra-phenyl-porphyrin-tetra-sulfonate (TPPS4), tetra-phenyl-chlorin-tetra-carboxylate (TPCC4), and chlorin e6 (Ce6) | Rheumatic disorders | Rapidly taken up (4 h) by the macrophages and accumulated in their cytoplasm and organelles | Schmitt et al. (2010) |
PCEC nanoparticles in Pluronic hydrogels | Lidocaine | Local anesthesia | Produced long-lasting infiltration anaesthesia of about 360 min | Yin et al. (2009) |
Poly(lactide-co-glycolic acid) and chitosan nanoparticle dispersed in HPMC and Carbopol gel | Spantide II | Allergic contact dermatitis and other skin inflammatory disorders | Nanogelinncreases potential for the percutaneous delivery of spantide II | Punit et al. (2012) |
pH-sensitive polyvinyl pyrrolidone-poly (acrylic acid) (PVP/PAAc) nanogels | Pilocarpine | Maintain an adequate concentration of the pilocarpine at the site of action for prolonged period of time | Abd El-Rehim et al. (2013) | |
Cross-linked poly (ethylene glycol) and polyethylenimine | Oligonucleotides | Neurodegenerative diseases | Effectively transported across the BBB. The transport efficacy is further increased when the surface of the nanogel is modified with transferrin or insulin | Vinogradov et al. (2004) |
Cholesterol bearing pullulan nanogels | Recombinant murine interleukine-12 | Tumor immunotherapy | Sustained release nanogel | Farhana et al. (2013) |
Poly(N-isopropylacrylamide) and chitosan | Hyperthermia cancer treatment and targeted drug delivery | Thermosensitive magnetically modalized | Farhana et al. (2013) | |
Cross-linked branched network of polyethyleneimine and PEG Polyplexnanogel | Fludarabine | Cancer | Elevated activity and reduced cytotoxicity | Farhana et al. (2013) |
Biocompatible nanogel of cholesterol-bearing pullulan | As artificial chaperone | Treatment of Alzheimer’s disease | Inhibit aggregation of amyloid β-protein | Ikeda et al. (2006) |
DNA nanogel with photo cross-linking | Genetic material | Gene therapy | Controlled delivery of plasmid DNA | Lee et al. (2009) |
Carbopol/zinc oxide (ZnO) hybrid nanoparticle gel | ZnO nanoparticles | Antibacterial activity, bacterial inhibitor | Ismail et al. (2021) |
Table adapted from Swarnali et al., 2017