Nt'ot'e ultrasónica catalizadores pa ar conversión éter dimetílico (DME)
Bifunctional Catalysts for Direct DME Conversion
The production of dimethyl ether (DME) is a well-established industrial process that is divided into two steps: first, the catalytic hydrogenation of syngas into methanol (CO / CO2 + 3H2 → CH3OH + H2HO) and secondly, a subsequent catalytic dehydration of the methanol over acid catalysts to produce (2CH3OH → CH3OCH3 + H2O). The major limitation of this two-step DME synthesis is related to the low thermodynamics during the phase of methanol synthesis, which results in a low gas conversion per pass (15-25%). Thereby, high recirculation ratios as well as high capital and operating costs are occurring.
In order overcome this thermodynamic limitation, direct DME synthesis is significantly more favourable: In the direct DME conversion, the methanol synthesis step is coupled with the dehydration step in a single reactor
(2CO / CO2 + 6H2 → CH3OCH3 + 3H2O).
Síntesis catalizadores altamente reactivos pa ar conversión DME ir nge ya ultrasonidos nts'edi
Ar reactividad ne ar selectividad ya catalizadores pa ar conversión dimetil éter xi mejorar ar significativamente ir nge 'nar nt'ot'e ultrasónico. Zeolitas komongu ya zeolitas ácidas (hne. ej., zeolita aluminosilicato HZSM — 5) ne ya zeolitas decoradas (hne. ej., ko CuO yá ZnO yá ja ar)2O3) ge ya ndu'mi catalizadores nä'ä mi utilizan ko éxito pa ar producción DME.
Chlorination and fluorination of zeolites are effective methods to tune the catalytic acidity. The chlorinated and fluorinated zeolite catalysts were prepared by the impregnation of zeolites (H-ZSM-5, H-MOR or H-Y) using two halogen precursors (ammonium chloride and ammonium fluoride) in the study by the research team of Aboul-Fotouh. The influence of ultrasonic irradiation was evaluated for optimizing both halogen precursors for production of dimethylether (DME) via methanol dehydration in a fixed bed reactor. Comparative DME catalysis trial revealed that the halogenated zeolite catalysts prepared under ultrasonic irradiation show higher performance for DME formation. (Aboul-Fotouh et al., 2016)
In another study, the research team investigated all important ultrasonication variables encountered during carrying out the dehydration of methanol on H-MOR zeolite catalysts to produce dimethylether. For their Sonication eperiments, the research team used the Hielscher UP50H probe-type ultrasonicator. Scanning electron microscope (SEM) imaging of the sonicated H-MOR zeolite (Mordenite zeolite) have clarified that methanol by itself used as an ultrasonication medium gives the best results concerning the homogeneity of particle sizes compared to the untreated catalyst, where large agglomerates and non-homogeneous clusters appeared. These findings certified that ultrasonication has a deep effect on the unit cell resolution and hence on the catalytic behavior of the dehydration of methanol to dimethyl ether (DME). NH3-TPD shows that ultrasound irradiation has enhanced the acidity of H-MOR catalyst and hence it is catalytic performance for DME formation. (Aboul-Gheit et al., 2014)
Kasu̲ nga̲tho ar DME yá 'ma da produce ya deshidratación metanol utilizando ya 'na'ño catalizadores sólido-ácidos komongu ar zeolitas, sílica — alúmina, alúmina, da ar2O3— B2O3, etcétera. ir nge Xtí reacción:
2CH3O <—> CH3OCH3 + H2O(-22.6k jmol)-1)
Koshbin ne Haghighi (2013) prepararon CuO — ZnO — bí ar2O3Yá HZSM — 5 nanocatalizadores ir nge 'nar nt'ot'e combinado co-precipitación — ultrasonidos. Equipo nthoni bí dini "ne ar mfats'i energía ultrasónica pe̲ts'i 'nar Nar dätä hño influencia ar dispersión ar función hidrogenación CO ne, ja ya consecuencia, ja ya rendimiento ar síntesis DME. Ar investigó ar durabilidad ar nanocatalizador sintetizado asistido ya ultrasonidos Nxoge ar reacción gas síntesis da DME. Ar nanocatalizador pierde 'nar nt'ot'e insignificante jar nsa̲di reacción nu'bya formación coque ya especies cobre jar hmä". [Khoshbin ne Haghighi, 2013.]
'Nar nanocatalizador alternativo hinda zeolita, ne 'nehe ar nt'ot'e xi na hño pa da nja ntungi ar conversión DME, ge 'nar catalizador γ-alúmina poroso tamaño nanométrico. Ar γ-alúmina porosa tamaño nanométrico ar sintetizó éxito ko ya precipitación ir nge ya mezcla ultrasónica. Ar nt'ot'e sonoquímico favorece ar síntesis nanopartículas. (cf. Rahmanpour et jar el., 2012)
¿Yogo'ä ya t'uti hñe̲he̲ ya nanocatalizadores preparados ya ultrasonidos?
Pa ar producción catalizadores heterogéneos, tso̲kwa menudo ar requieren materiales mar hñets'i hmädi añadido, komongu ya metales xi na nza̲tho. 'Me̲hna thogi ne ya catalizadores 'bu̲hu̲ caros ne, ir mejora ar dätä nt'ot'e, nja'bu Komo ar extensión ar ciclo ar nzaki ya catalizadores, ya factores bojä mahyoni. Ja ya nt'ot'e nt'ot'e nanocatalizadores, ar técnica sonoquímica nu'u̲ t'uni 'nar nt'ot'e altamente nt'ot'e xi hño. Ar mfeni ya ultrasonidos pa da t'ot'e ya superficies altamente reactivas, mejorar ar mezcla ne ar aumentar ar transporte masa nä'ä bi pa̲ti ja 'nar técnica hontho prometedora pa explorar pa ár mfädi ne activación catalizadores. Pe producir nanopartículas homogéneas ne dispersas hinda 'medi da instrumentos costosos ne ya nkohi extremas.
Varios nsadi nthoni, ja ya científicos llegan ár njäts'i nu'bu da mfädi catalizadores ultrasónicos ar nt'ot'e mäs ventajoso pa ar producción nanocatalizadores homogéneos. Ja ya nt'ot'e nt'ot'e nanocatalizadores, ar técnica sonoquímica nu'u̲ t'uni 'nar nt'ot'e altamente nt'ot'e xi hño. Ar mfeni ar sonicación intensa pa da t'ot'e ya superficies altamente reactivas, mejorar jar mezcla ne aumentar transporte masa dá bi pa̲ti ja 'nar técnica hontho prometedora pa ár mfädi ne activación catalizadores. Pe producir nanopartículas homogéneas ne dispersas hinda 'medi da instrumentos costosos ne ya nkohi extremas. (cf. Koshbin ne Haghighi, 2014)
Ultrasonidos mar hñets'i rendimiento pa ar síntesis catalizadores mesoporosos
Ya equipos sonoquímicos pa ar síntesis nanocatalizadores mar hñets'i rendimiento gi 'bu̲hu̲ da 'mui jar 'na tamaño – ndezu̲ ar ultrasonidos compactos ar laboratorio asta reactores ultrasónicos totalmente industriales. Hielscher Ultrasonics diseña, fabrica ne distribuye ultrasonidos mextha nts'edi. Ga̲tho ya sistemas ultrasónicos fabrican jár 'mui central Teltow (nu Alemäña) ne da distribuyen ndezu̲ nu'bu̲ ya nga̲tho ar ximha̲i.
Sofisticado ar hardware ne ar software inteligente ya ultrasonidos Hielscher gi 'bu̲hu̲ diseñados pa garantizar 'nar funcionamiento fiable, resultados reproducibles ne facilidad njapu'befi. Ya ultrasonidos Hielscher ya robustos ne ya fiables, nä'ä mi permite ár instalación ne funcionamiento ja ya 'be̲fi hñei. Ar tsa̲ da acceder hingi hembi da ja ya ajustes operativos ne marcar ya a través de 'nar menú intuitivo, nä'ä ar tsa̲ da acceder a través de 'nar pantalla táctil 'bede njät'i ne 'nar control remoto ar navegador. Ir ga̲tho ya nkohi procesamiento, komongu ar energía neta, ar energía Nxoge, ar amplitud, pa, ar presión ne ar mpat'i, bí registran automáticamente 'na jar tarheta SD incorporada. 'Me̲hna bí permite da hnu ne comparar ya ejecuciones ar sonicación bí thogi ne optimizar ar síntesis ne ar funcionalización ya nanocatalizadores ar máxima dätä nt'ot'e.
Hielscher Ultrasonics systems are used worldwide for sonochemical synthesis processes and are proven to be reliable for the synthesis of high-quality zeolite nano-catalystss as well as zeolite derivatives. Hielscher industrial ultrasonicators can easily run high amplitudes in continuous operation (24/7/365). Amplitudes of up to 200µm can be easily continuously generated with standard sonotrodes (ultrasonic probes / horns). For even higher amplitudes, customized ultrasonic sonotrodes are available. Due to their robustness and low maintenance, our ultrasonicators are commonly installed for heavy duty applications and in demanding environments.
Ya procesadores ultrasónicos ar Hielscher pa síntesis sonoquímicas, funcionalización, nanoestructuración ne desaglomeración ya gi 'bu̲hu̲ instalados jar nga̲tho ar ximha̲i da escala yá 'ma. Ga japi ar jar contacto ko ngekagihe nu'bya pa dige ár proceso ar fabricación ar nanocatalizadores. Ma experimentado jä'i da encantado ar t'uni mäs ungumfädi dige ar vía síntesis sonoquímica, sistemas ya ultrasónicos ne ya precios.
Ko ár ventaja ar nt'ot'e síntesis ultrasónica, ár producción nanocatalizadores mesoporosos destacará ir nge ár dätä nt'ot'e, simplicidad ne hñets'i'i coste jar comparación ko ya procesos síntesis catalizadores.
Xtí tabla bí xta ar 'nar indicación ya mfeni ya procesamiento aproximada ar HMUNTS'UJE ultrasonidos:
Volumen lote | Gasto | Dispositivos recomendados |
---|---|---|
Ar 1 jar 500 ml | Ar 10 200 ml yá min | UP100H |
Ar 10 da 2000 ml | Ar 20 400 ml yá min | UP200Ht, UP400St |
0.1 da 20L | 0.2 4 L yá min | UIP2000hdT |
Ar 10 da 100L | Ar 2 10 l yá min | UIP4000hdT |
n.d. | Ar 10 100 L yá min | UIP16000 |
n.d. | Mar dätä | Racimo ar UIP16000 |
Contactar ga! Yá preguntar ga!
Bibliografía yá Referencias
- Ahmed, K.; Sameh, M.; Laila, I.; Naghmash, Mona (2014): Ultrasonication of H-MOR zeolite catalysts for dimethylether (DME) production as a clean fuel. Journal of Petroleum Technology and Alternative Fuels 5, 2014. 13-25.
- Reza Khoshbin, Mohammad Haghighi (2013): Direct syngas to DME as a clean fuel: The beneficial use of ultrasound for the preparation of CuO–ZnO–Al2O3/HZSM-5 nanocatalyst. Chemical Engineering Research and Design, Volume 91, Issue 6, 2013. 1111-1122.
- Kolesnikova, E.E., Obukhova, T.K., Kolesnichenko, N.V. et al. (2018): Ultrasound-Assisted Modification of Zeolite Catalyst for Dimethyl Ether Conversion to Olefins with Magnesium Compounds. Pet. Chem. 58, 2018. 863–868.
- Reza Khoshbin, Mohammad Haghighi (2014): Direct Conversion of Syngas to Dimethyl Ether as a Green Fuel over Ultrasound- Assisted Synthesized CuO-ZnO-Al2O3/HZSM-5 Nanocatalyst: Effect of Active Phase Ratio on Physicochemical and Catalytic Properties at Different Process Conditions. Catalysis Science & Technology, Volume 6, 2014.
https://pubs.rsc.org/en/content/articlelanding/2014/cy/c3cy01089a - Sameh M.K. Aboul-Fotouh, Laila I. Ali, Mona A. Naghmash, Noha A.K. Aboul-Gheit (2017): Effect of the Si/Al ratio of HZSM-5 zeolite on the production of dimethyl ether before and after ultrasonication. Journal of Fuel Chemistry and Technology, Volume 45, Issue 5, 2017. 581-588.
- Rahmanpour, Omid; Shariati, Ahmad; Khosravi-Nikou, Mohammad Reza (2012): New Method for Synthesis Nano Size γ-Al2O3 Catalyst for Dehydration of Methanol to Dimethyl Ether. International Journal of Chemical Engineering and Applications 2012. 125-128.
- Millán, Elena; Mota, Noelia; Guil-Lopez, R.; Pawelec, Barbara; Fierro, José; Navarro, Rufino (2020): Direct Synthesis of Dimethyl Ether from Syngas on Bifunctional Hybrid Catalysts Based on Supported H3PW12O40 and Cu-ZnO(Al): Effect of Heteropolyacid Loading on Hybrid Structure and Catalytic Activity. Catalysts 10, 2020.
- Suslick, Kenneth S.; Hyeon, Taeghwan; Fang, Mingming; Cichowlas, Andrzej A. (1995): Sonochemical synthesis of nanostructured catalysts. Materials Science and Engineering: A. Proceedings of the Symposium on Engineering of Nanostructured Materials. ScienceDirect 204 (1–2): 186–192.
- Pavel V. Cherepanov, Daria V. Andreeva (2017): Phase structuring in metal alloys: Ultrasound-assisted top-down approach to engineering of nanostructured catalytic materials. Ultrasonics Sonochemistry 2017.
- Sameh M.K. Aboul-Fotouh, Noha A.K. Aboul-Gheit, Mona A. Naghmash (2016): Dimethylether production on zeolite catalysts activated by Cl−, F− and/or ultrasonication. Journal of Fuel Chemistry and Technology, Volume 44, Issue 4, 2016. 428-436.
Datos da Bale ar penä ga pädi
Dimethyl Ether (DME) as Fuel
One of the major envisaged uses of dimethyl ether is its application as substitute for propane in LPG (liquid propane gas), which is used as fuel for vehicles, in households and industry. In propane autogas, dimethyl ether can also be used as a blendstock.
Furthermore, DME is also a promising fuel for diesel engines and gas turbines. For diesel engines, the high cetane number of 55, compared to that of diesel fuel from petroleum with cetane numbers of 40–53, is highly advantageous. Only moderate modifications are necessary to enable a diesel engine to burn dimethyl ether. The simplicity of this short carbon chain compound leads during combustion to very low emissions of particulate matter. For these reasons as well as being sulfur-free, dimethyl ether meets even the most stringent emission regulations in Europe (EURO5), U.S. (U.S. 2010), and Japan (2009 Japan).