Producción quitina ne quitosano a partir de hongos
Ar ultrasonicación ge 'nar nt'ot'e altamente nt'ot'e xi hño pa liberar quitina ne quitosano ya 'mui mbo fúngicas komongu ya hongos. Ar quitina ne ar quitosano tsa desacetilar ar ja ar procesamiento 'mefa ár njäts'i Tange'u da uni 'nar biopolímero mextha ar hño. Desacetilación asistida ya ultrasonidos ge 'nar técnica altamente xi hño, simple ne ngut'a, da xta komongu ar nt'uni quitosanos mextha hño mar hñets'i be̲xu molecular ne biodisponibilidad mäs xi ngu.
Mushroom-Derived Chitin and Chitosan via Ultrasonication
Edible and medicinal mushrooms such as Lentinus edodes (shiitake), Ganoderma lucidum (Lingzhi or reishi), Inonotus obliquus (chaga), Agaricus bisporus (button mushrooms), Hericium erinaceus (lions mane), Cordyceps sinensis (caterpillar fungus), Grifola frondosa (hen-of-the-wood), Trametes versicolor (Coriolus versicolor, Polyporus versicolor, turkeytail) and many other fungus species are widely used as food and for the extraction of bioactive compounds. These mushrooms as well as processing residuals (mushroom waste) can be used to produce chitosan. Ultrasonication not only promotes the release of chitin from the fungal cell wall structure, but also drives the conversion of chitin into valuable chitosan via ultrasonically-assisted depolymerization and deacetylation.
Intense ultrasonication using a probe-type ultrasonic system is a technique used to promote the depolymerization and deacetylation of chitin, leading to the formation of chitosan. Chitin is a naturally occurring polysaccharide found in the exoskeletons of crustaceans, insects, and the cell walls of certain fungi. Chitosan is derived from chitin by removing the acetyl groups from the chitin molecule.
Ultrasonic Procedure for Fungal Chitin to Chitosan Conversion
When intense ultrasonication is applied for the production of chitosan from chitin, a chitin suspension is sonicated with high-intensity, low-frequency ultrasound waves, typically in the range of 20 kHz to 30 kHz. The process generates intense acoustic cavitation, which refers to the formation, growth, and collapse of microscopic vacuum bubbles in the liquid. Cavitation generates localized extremly high-shear forces, high temperatures (up to several thousand degrees Celsius) and pressures (up to several hundred atmospheres) in the liquid surrounding the cavitation bubbles. These extreme conditions contribute to the breakdown of the chitin polymer and the subsequent deacetylation.

Imágenes SEM quitinas ne quitosanos yoho especies hongos: da) Quitina ar L. vellereus; (b) Quitina ar hne. ribis; (c) Quitosano ar L.vellereus; (d) quitosano ar hne. ribis.
imagen y estudio: © Erdoğan et al., 2017
Ultrasonic Depolymerization of Chitin
The depolymerization of chitin occurs through the combined effects of mechanical forces, such as microstreaming and liquid jetting, as well as by ultrasonically initiated chemical reactions induced by free radicals and other reactive species formed during cavitation. The high-pressure waves generated during cavitation cause the chitin chains to undergo shear stress, resulting in the scission of the polymer into smaller fragments.
Ultrasonic Deacetylation of Chitin
In addition to depolymerization, intense ultrasonication also promotes the deacetylation of chitin. Deacetylation involves the removal of acetyl groups from the chitin molecule, leading to the formation of chitosan. Intense ultrasonic energy, particularly the high temperatures and pressures generated during cavitation, accelerate the deacetylation reaction. The reactive conditions created by cavitation help break the acetyl linkages in chitin, resulting in the release of acetic acid and the conversion of chitin into chitosan.
Overall, intense ultrasonication enhances both the depolymerization and deacetylation processes by providing the necessary mechanical and chemical energy to break down the chitin polymer and facilitate the conversion to chitosan. This technique offers a rapid and efficient method for the production of chitosan from chitin, with numerous applications in various industries, including pharmaceuticals, agriculture, and biomedical engineering.
Industrial Chitosan Production from Mushroom with Power Ultrasound
Producción yá 'ma quitina ne quitosano ar basa principalmente ja ya desechos ya industrias marinas (es decir, ar pesca, ar recolección ar mariscos, etc.). Ya 'na'ño ya 'mui mbo materia prima gi komongu ar nt'uni 'na'ño calidades quitina ne quitosano, komongu ar nt'uni ya fluctuaciones ya producción ne ya hño nu'bya ya variaciones estacionales ar pesca. 'Nehe, ar quitosano derivado ar 'mui mbo fúngicas ofrece propiedades t'uti hñe̲he̲ komongu ar longitud homogénea jar polímero ne una ar dätä solubilidad jar comparación ko ar quitosano ya 'mui mbo marinas. (cf. Ghormade et jar el., 2017) Pa suministrar quitosano uniforme, ar extracción quitina especies hongos ar xi convertido ja 'nar producción alternativa hingi mpa̲ti. Producción quitina ne citiosano a partir de hongos ar tsa̲ da dähä ar bí hei ne confiable ga utilizando ar extracción ar ultrasónica ne ar tecnología desacetilación. Ar sonicación intensa k'ats'i ma estructuras ya celulares pa liberar quitina ne promueve ar transferencia masa jar disolventes acuosos pa da rendimientos t'uti hñe̲he̲ ya quitina ne ya dätä nt'ot'e extracción. Ar 'mefa ár njäts'i Tange'u desacetilación ultrasónica bi pa̲ti ar quitina jar valioso ar quitosano. Tanto extracción ultrasónica quitina Komo ar desacetilación quitosano ar xi escalar linealmente ma 'na za̲ ár nthe̲ producción yá 'ma.

ultrasonicator UP400St pa ar extracción hongos: ar sonicación xta altos rendimientos compuestos bioactivos komongu ya polisacáridos quitina ne quitosano
Resultados ár nthoni pa ar quitina ar ultrasónica ne ar desacetilación quitosano
Zhu et jar ar. (2018) concluyen ja yá estudio ke ar desacetilación ultrasónica xi demostrado to ne avance crucial, convirtiendo β — quitina jar quitosano ko 83 — 94% ar desacetilación bí temperaturas ar reacción reducidas. Ar tsita ar izquierda gi 'ñudi 'nar tsita SEM ar quitosano desacetilado ya ultrasonidos (90 ar W, ar 15 ma min, 20 w/v % NaOH, 1:15 (g: mL)) (tsita ne estudio: © Zhu et jar el., 2018)
In their protocol, NaOH solution (20 w/v %) was prepared by dissolving NaOH flakes in DI water. The alkali solution was then added to GLSP sediment (0.5 g) at a solid-liquid ratio of 1:20 (g: mL) into a centrifuge tube. Chitosan was added to NaCl (40 mL, 0.2 M) and acetic acid (0.1 M) at a 1:1 solution volume ratio. The suspension was then subjected to ultrasound at a mild temperature of 25°C for 60 min using a probe-type ultrasonicator (250W, 20kHz). (cf Zhu et al., 2018)
Pandit et jar ar. (2021) bí dini da tasa degradación ya soluciones quitosano rara japi ar gi hyandi afectada ir nge ya concentraciones ar ácido utilizadas pa solubilizar jar polímero ne bi jagu̲ju̲ gran da medida ar mpat'i, intensidad ya ondas ultrasonido ne ya ndu nzafi iónica ja ya nt'ot'e utilizados pa disolver ar polímero. (cf. Pandit et jar el., 2021)
In another study, Zhu et al. (2019) used Ganoderma lucidum spore powders as fungal raw material and investigated ultrasonically‐assisted deacetylation and the effects of processing parameters such as sonication time, solid‐to‐liquid ratio, NaOH concentration, and irradiation power on the degree of deacetylation (DD) of chitosan. The highest DD value was obtained at the following ultrasonic parameters: 20 min sonication at 80W, 10% (g:ml) NaOH, 1:25 (g:ml). The surface morphology, chemical groups, thermal stability, and crystallinity of the ultrasonically obtained chitosan were examined using the SEM, FTIR, TG, and XRD. The research team reports a significant enhancement of the degree of deacetylation (DD), dynamic viscosity ([η]) and molecular weight (Mv¯) of the ultrasonically produced chitosan. The results underlined the ultrasonic deacetylation technique of fungi a highly potent production method for chitosan, which is suitable for biomedical applications. (cf. Zhu et al., 2019)
Superior Chitosan Quality with Ultrasonic Depolymerization and Deacetylation
Ya procesos impulsados ya ultrasonidos extracción ne despolimerización quitina yá quitosano ya controlables ko ya precisión ne ya parámetros ar proceso ultrasónico ar xi ajustar ya nt'ot'e primas ne ya ar producto final objetivo (nt'udi, be̲xu molecular, 'mui desacetilación). 'Me̲hna permite adaptar proceso ultrasonido ma factores externos ne da t'ot'e parámetros óptimos pa 'nar nt'uni ne 'nar dätä nt'ot'e t'uti hñe̲he̲.
Quitosano desacetilado ya ultrasonidos gi 'ñudi 'nar excelente biodisponibilidad ne ar biocompatibilidad. Nu'bu̲ ya biopolímeros ar quitosano preparados ya ultrasonido ar comparan ko ar quitosano derivado térmicamente ir nge ya propiedades biomédicas, ar quitosano producido ya ultrasonidos exhibe 'nar viabilidad significativamente mejorada ya fibroblastos () células L929) ne 'nar dätä nt'ot'e antibacteriana tanto pa Escherichia coli (E. coli) komongu pa Staphylococcus aureus (S. aureus).
(cf. Zhu et jar el., 2018)

Escaneando imágenes microscopía electrónica (SEM) jar 'nar aumento 100o a) gladius, b) ya gladius tratado ko ar ultrasonido, c) — chitin, d) nkohi ko ultrasonido jar quitina ne e) chitosan (fuente: Preto et jar el. 2017)
High-Performance Ultrasonic Equipment for Chitin and Chitosan Processing
The fragmentation of chitin and the decetylation of chitin to chitosan requires powerful and reliable ultrasonic equipment that can deliver high amplitudes, offers precise controllability over the process parameters and can be operated 24/7 under heavy load and in demanding environments. Hielscher Ultrasonics product range fulfils these requirements reliably. Besides outstanding ultrasound performance, Hielscher ultrasonicators boast high energy efficiencies, which is a significant economical advantage – Ho̲ntho nu'u̲ nu'bu̲ bí emplea ar producción yá 'ma jar gran tso̲kwa escala.
Hielscher ultrasonicators are high-performance systems that can be equipped with accessories such as sonotrodes, boosters, reactors or flow cells in order to match your process needs in an optimal manner.
With digital color display, the option to preset sonication runs, automatic data recording on an integrated SD card, remote browser control and many more features, highest process control and user-friendliness are ensured. Paired with robustness and heavy load-bearing capacity, Hielscher ultrasonic systems are your reliable work horse in production.
Chitin fragmentation and deacetylation requires powerful ultrasound to obtain the targeted conversion and a final chitosan product of high-quality. Especially for the fragmentation of the chitin flakes and the depolymerization / deacetylation steps, high amplitudes and elevated pressures are crucial. Hielscher Ultrasonics industrial ultrasonic processors easily deliver very high amplitudes. Amplitudes of up to 200µm can be continuously run in 24/7 operation. For even higher amplitudes, customized ultrasonic sonotrodes are available. The power capacity of Hielscher ultrasonic systems allow for efficient and fast depolymerization and deacetylation in a safe and user-friendly process.

Reactor ultrasónico ko 2000W ultrasound probe UIP2000hdT for chitin extraction from mushrooms and subsequent depolymerization / deacetylation
Volumen lote | Tasa flujo | Dispositivos recomendados |
---|---|---|
1 jar 500mL | 10 200 mL yá min | UP100H |
10 da 2000mL | 20 400 mL yá min. | UP200Ht, UP400St |
0.1 da 20L | 0.2 4 L yá min | UIP2000hdT |
10 da 100L | 2 10 L yá min | UIP4000hdT |
n.a. | 10 100 L yá min | UIP16000 |
n.a. | mäs dätä | Cluster ar UIP16000 |
Ja ar contacto ko ngekihe! Yá preguntar ga!
Synergistic Chitin Treatment Improved by Ultrasonication
In order to overcome the drawbacks (i.e., low efficiency, high energy cost, long processing time, toxic solvents) of traditional chemical and enzymatic chitin deacetlytion, high-intensity ultrasound has been integrated into chitin and chitosan processing. High intensity sonication and the resulting effects of acoustic cavitation lead to a rapid scission of polymer chains and reduce the polydispersity, thereby promoting the synthesis of chitosan. Furthermore, ultrasonic shear forces intensify mass transfer in the solution so that chemical, hydrolytic, or enzymatic reaction are enhanced. Ultrasonic chitin treatment can be combined with already existing chitin processing techniques such as chemical methods, hydrolysis or enzymatic procedures.
Desacetilación química asistida ya ultrasonidos ne despolimerización
Dado ne ar quitina ge 'nar biopolímero hingi reactivo ne insoluble, gi japi ar ja ya pasos ar proceso desmineralización, desproteinización ne despolimerización yá desacetilación pa da quitosano soluble ne ar bioacerágico. Nuya pasos ar proceso implican tratamientos ko ácidos fuertes komongu ar HCl ne ar bases fuertes Komo ar NaOH ne ar KOH. Komo nuya pasos ar proceso convencional ya ineficientes, lentos ne exigen altas ar energías, ar intensificación ar proceso ya sonicación mejora significativamente ar producción quitosano. Ár nt'ot'e ultrasonido nts'edi aumenta ya rendimientos ne ya ar quitosano, reduce proceso pa ma 'ra ya tx'u̲tho ya ora, permite disolventes mäs suaves ne xí ne nga̲tho ar proceso da mäs nt'ot'e xi hño energéticamente.
Desproteinización ultrasónicamente mejorada ar quitina
Vallejo-Dominguez et al. (2021) found in their investigation of chitin deproteinization that the “application of ultrasound for the production of biopolymers reduced the protein content as well as the particle size of chitin. Chitosan of high deacetylation degree and medium molecular weight was produced through ultrasound assistance.”
Hidrólisis ultrasónica pa ar despolimerización quitina
Pa ar hidrólisis química, ar utilizan ácidos wa álcalis pa desacetilatar quitina, ne nuna, ar desacetilación alcalina (nt'udi, hidróxido ar sodio NaOH) ar usa xí ampliamente. Ar hidrólisis ácida ge 'nar nt'ot'e alternativo ja ar desacetilación química pa mahä'mu̲, ho bí utilizan ar soluciones ácido orgánico pa despolimerizar quitina ne ar quitosano. Ar nt'ot'e hidrólisis ácida ar gi japu̲'be̲fi principalmente nu'bu̲ ar be̲xu molecular ar quitina ne ar quitosano da da homogéneo. Nuna ar proceso hidrólisis convencional ar pädi Honja lento ne njapu'befi intensivo ya energía ne ya costos. Requerimiento ácidos fuertes, altas ya temperaturas ne ya presiones ya factores da convierten ar proceso quitosano hidrolítico ja 'nar nt'ot'e xi costoso ne lento. Ya ácidos utilizados requieren procesos posteriores komongu ar neutralización ne ar desalización.
Ar integración ar ultrasonido mextha nts'edi ja ar proceso hidrólisis, ko ya requisitos mpat'i ne presión pa ar escisión hidrolítica quitina ne quitosano ar xi reducir significativamente. 'Nehe, ar sonicación permite concentraciones ar ácido xí bajas wa njapu'befi ya ácidos mäs suaves. 'Me̲hna thogi ne ar proceso da mäs sostenible, nt'ot'e xi hño, rentable ne respetuoso ko ar nt'uni mbo jar ximha̲i.
Desacetilación química asistida ya ultrasonidos
Ar desintegración ar química ne ar desacteilación ar quitina ne ar quitosano ar logran principalmente ir nge ar nt'ot'e ar quitina wa ar quitosano ácidos minerales (nt'udi, ácido clorhídrico HCl), nitrito sodio (NaNO2), wa peróxido hidrógeno (H2Acerca ar2). Ar ultrasonido mejora ar tasa desacetilación, acortando nja'bu̲ ar pa ar reacción requerido da uni ár 'mui objetivo desacetilación. 'Me̲hna ir bo̲ni ke ar sonicación reduce ar pa procesamiento requerido 12 — 24 ora ma 'ra ya tx'u̲tho ya ora. 'Nehe, ar sonicación permite concentraciones químicas significativamente mäs bajas, ngu, 40% (hne yá hne) ar hidróxido sodio utilizando sonicación, mente da 65% (hne yá hne) requiere hinda njapu'befi ya ultrasonido.
Desacetilación ultrasónica-enzimática
Nu'bu̲ bien ar desacetilación enzimática ge 'nar dets'e procesamiento za̲tho ne ambientalmente benigna, ár dätä nt'ot'e ne costos hingi ya bojä. Nu'bya ar complejo, intenso 'be̲fi 'ye̲ ar obra ne costoso aislamiento ne purificación aguas abajo de ya enzimas producto final, desacetilación enzimática quitina hingi ar implementa ja ar producción yá 'ma, ho̲ntho mi Honto ar gi japu̲'be̲fi ja ar laboratorio ar nthoni científica.
Pretratamiento ultrasónico 'bu̲ 'be̲tho ar desacetilación enzimática fragmenta ya moléculas quitina, ampliando nja'bu̲ ar área superficie ne o̲t'e da mäs superficie ntsuni disponible pa ya enzimas. Ar sonicación mar hñets'i rendimiento ayuda mejorar ar desacetilación enzimática ne xí ne ar proceso da mäs bojä.
Ot'a yá Referencias
- Ospina Álvarez S.P., Ramírez Cadavid D.A., Escobar Sierra D.M., Ossa Orozco C.P., Rojas Vahos D.F., Zapata Ocampo P., Atehortúa L. (2014): Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. Biomed Research International 2014.
- Valu M.V., Soare L.C., Sutan N.A., Ducu C., Moga S., Hritcu L., Boiangiu R.S., Carradori S. (2020): Optimization of Ultrasonic Extraction to Obtain Erinacine A and Polyphenols with Antioxidant Activity from the Fungal Biomass of Hericium erinaceus. Foods, Dec 18;9(12), 2020.
- Erdoğan, Sevil & Kaya, Murat & Akata, Ilgaz (2017): Chitin extraction and chitosan production from cell wall of two mushroom species (Lactarius vellereus and Phyllophora ribis). AIP Conference Proceedings 2017.
- Zhu, L., Chen, X., Wu, Z., Wang, G., Ahmad, Z., & Chang, M. (2019): Optimization conversion of chitosan from Ganoderma lucidum spore powder using ultrasound‐assisted deacetylation: Influence of processing parameters. Journal of Food Processing and Preservation 2019.
- Li-Fang Zhu, Jing-Song Li, John Mai, Ming-Wei Chang (2019): Ultrasound-assisted synthesis of chitosan from fungal precursors for biomedical applications. Chemical Engineering Journal, Volume 357, 2019. 498-507.
- Zhu, Lifang; Yao, Zhi-Cheng; Ahmad, Zeeshan; Li, Jing-Song; Chang, Ming-Wei (2018): Synthesis and Evaluation of Herbal Chitosan from Ganoderma Lucidum Spore Powder for Biomedical Applications. Scientific Reports 8, 2018.
- G.J. Price, P.J. West, P.F. Smith (1994): Control of polymer structure using power ultrasound. Ultrasonics Sonochemistry, Volume 1, Issue 1, 1994. S51-S57.
Hechos Bale ar penä ga pädi
¿Tema funciona ar extracción ar ultrasónica ne ar desacetilación ar quitina?
When power ultrasound waves are couples into a liquid or slurry (e.g., a suspension consisting of chitin in a solvent), the ultrasonic waves travel through the liquid causing alternating high-pressure / low-pressure cycles. During low-pressure cycles, minute vacuum bubbles (so-called cavitation bubbles) are created, which grow over several pressure cycles. At a certain size, when the bubbles cannot absorb more energy, they implode violently during a high-pressure cycle. The bubble implosion is characterised by intense cavitational (so-called sonomechanical) forces. These sonomechanical conditions occur locally in the cavitational hot-spot and are characterized by very high temperatures and pressures of up to 4000K and 1000atm, respectively; as well as corresponding high temperature and pressure differentials. Furtehrmore, micro-turbulences and liquid streams with velocities of up to 100m/s are generated. Ultrasonic extraction of chitin and chitosan from fungi and crustaceans as well as chitin depolymerization and deacetylation are mainly caused by sonomechanical effects: the agitation and turbulences disrupt cells and promote mass transfer and can also cut polymer chains in combination with acidic or alkaline solvents.
Working Principle of Chitin Extraction via Ultrasonication
Ar extracción ultrasónica 'wagi eficientemente estructura celular ya hongos ne libera ya compuestos intracelulares Jot'i celular ne ar interior ar célula (es decir, polisacáridos komongu ar quitina ne ar quitosano ne ma'ra fitoquímicos bioactivos) ja ar disolvente. Ar extracción ar ultrasónica bí basa jár ndui funcionamiento ar cavitación acústica. Ya efectos ar cavitación ultrasónica yá acústica ya altas ya ndu nzafi cizallamiento, turbulencias ne diferenciales ar presión intensos. Gi ndu sonomecánicas rompen estructuras celulares komongu ya paredes celulares hongos quitinosos, promueven ar transferencia masa entre ar biomaterial ar hongo ne ar disolvente ne gi komongu ar nt'uni rendimientos ar extracto xi altos mbo 'nar proceso rápido. 'Nehe, ar sonicación promueve ar esterilización extractos ma ar ba ho bacterias ne ar microbios. Inactivación microbiana ya sonicación ar nt'uni ya ndu nzafi cavitacionales destructivas ar membrana celular, ar producción ar radicales libres ne ar calentamiento localizado.
Working Principle of Depolymerization and Deacetylation via Ultrasonication
The polymer chains are caught in the ultrasonically generated shear field around a cavitation bubble and the chain segments of the polymer coil near a collapsing cavity will move at a higher velocity than those further away. Stresses are then produced on the polymer chain due to the relative motion of the polymer segments and solvents and these are sufficient to cause cleavage. The process is thus similar to other shearing effects in polymer solutions ~2° and gives very similar results. (cf. Price et al., 1994)
Quitina
Chitin is an N-acetylglucosamine polymer (poly-(β-(1–4)-N-acetyl-D-glucosamine), is a naturally occurring polysaccharide widely found in the exoskeleton of invertebrates such as crustacean and insects, the inner skeleton of squid and cuttlefish as well as the cell walls of fungi. Embedded into the structure of mushroom cell walls, chitin is responsible for the shape and rigidity of the fungal cell wall. For many applications, chitin is converted to its deacetylated derivative, known as chitosan via a depolymerization process.
Quitosano ar derivado mäs hne ngatho ne mäs valioso ar ar quitina. Ge 'nar polisacárido mar hñets'i be̲xu molecular unido ya glucósido b — 1, 4, xi t'o̲t'e ya N-acetil — glucosamina ne ar glucosamina.
Ar quitosano ar tsa̲ da derivar a través de productos químicos wa ya enzimáticos n— desacetilación. Ja ar proceso ar desacetilación impulsado químicamente, ar Hmunts'i acetilo (R — NHCOCH3) is cleaved off by strong alkali at high temperatures. Alternatively, chitosan can be synthesized via enzymatic deacetylation. However, on industrial production scale chemical deacetylation is the preferred technique, since enzymatic deacetylation is significantly less efficient due to the high cost of the deacetylase enzymes and the low chitosan yields obtained. Ultrasonication is used to intensify the chemical degradation of the (1→4)-/β-linkage (depolymerization) and effect the deacetylation of chitin to obtain high-quality chitosan.
Nu'bu̲ ar sonicación da t'uni komongu ár nt'ot'e previo pa ar desacetilación enzimática, 'nehe bí mejora ar rendimiento ne ar quitosano ya.

Hielscher Ultrasonics fabrica homogeneizadores ultrasónicos mar hñets'i rendimiento Laboratorio Pa tamaño industrial.